528 research outputs found

    Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts – a DFT investigation: relevance to Renu-Seeram bio solar cell

    Get PDF
    Density functional theoretical calculations have been utilized to investigate the interaction of the amino acid arginine with the (100) surface of anatase and the reproduction of experimentally measured 49Ti NMR chemical shifts of anatase. Significant binding of arginine through electrostatic interaction and hydrogen bonds of the arginine guanidinium protons to the TiO2 surface oxygen atoms is observed, allowing attachment of proteins to titania surfaces in the construction of bio-sensitized solar cells. GIAO-B3LYP/6-31G(d) NMR calculation of a three-layer model based on the experimental structure of this TiO2 modification gives an excellent reproduction of the experimental value (-927 ppm) within +/- 7 ppm, however, the change in relative chemical shifts, EFGs and CSA suggest that the effect of the electrostatic arginine binding might be too small for experimental detection

    Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

    Get PDF
    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs

    Semiconducting properties of Cu5SbO6

    Get PDF
    Thermoelectric power, electrical resistivity, I V characteristics, relative electrical permittivity, dc magnetization and ac magnetic susceptibility measurements carried out on Cu5SbO6 showed p-type semiconducting behaviour with the activation energy of 0.24 eV as well as ferrimagnetic order with the Néel temperature of 5.2 K. The e ective magnetic moment of 5.857 B/f.u. revealed the orbital contribution to the magnetic moment. Large value of the relative electrical permittivity indicated that the Cu2+ ions with the unscreened and un lled electron shells are responsible for the polarizability and forming of electric dipoles

    Aquaporin–graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination

    Full text link
    © 2018 The Author(s) Published by the Royal Society. All rights reserved. The aquaporin superfamily of hydrophobic integral membrane proteins constitutes water channels essential to the movement of water across the cell membrane, maintaining homeostatic equilibrium. During the passage of water between the extracellular and intracellular sides of the cell, aquaporins act as ultra-sensitive filters. Owing to their hydrophobic nature, aquaporins self-assemble in phospholipids. If a proper choice of lipids is made then the aquaporin biomimetic membrane can be used in the design of an artificial kidney. In combination with graphene, the aquaporin biomimetic membrane finds practical application in desalination and water recycling using mostly Escherichia coli AqpZ. Recently, human aquaporin 1 has emerged as an important biomarker in renal cell carcinoma. At present, the ultra-sensitive sensing of renal cell carcinoma is cumbersome. Hence, we discuss the use of epitopes from monoclonal antibodies as a probe for a point-of-care device for sensing renal cell carcinoma. This device works by immobilizing the antibody on the surface of a single-layer graphene, that is, as a microfluidic device for sensing renal cell carcinoma

    The prevalence and incidence of mental ill-health in adults with autism and intellectual disabilities

    Get PDF
    The prevalence, and incidence, of mental ill-health in adults with intellectual disabilities and autism were compared with the whole population with intellectual disabilities, and with controls, matched individually for age, gender, ability-level, and Down syndrome. Although the adults with autism had a higher point prevalence of problem behaviours compared with the whole adult population with intellectual disabilities, compared with individually matched controls there was no difference in prevalence, or incidence of either problem behaviours or other mental ill-health. Adults with autism who had problem behaviours were less likely to recover over a two-year period than were their matched controls. Apparent differences in rates of mental ill-health are accounted for by factors other than autism, including Down syndrome and ability level

    3D Brain Segmentation Using Dual-Front Active Contours with Optional User Interaction

    Get PDF
    Important attributes of 3D brain cortex segmentation algorithms include robustness, accuracy, computational efficiency, and facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide the segmentation to ensure an accurate final result. We propose a novel 3D brain cortex segmentation procedure utilizing dual-front active contours which minimize image-based energies in a manner that yields flexibly global minimizers based on active regions. Region-based information and boundary-based information may be combined flexibly in the evolution potentials for accurate segmentation results. The resulting scheme is not only more robust but much faster and allows the user to guide the final segmentation through simple mouse clicks which add extra seed points. Due to the flexibly global nature of the dual-front evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed of our scheme compared with other methods

    Defining language impairments in a subgroup of children with autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is diagnosed on the basis of core impairments in pragmatic language skills, which are found across all ages and subtypes. In contrast, there is significant heterogeneity in language phenotypes, ranging from nonverbal to superior linguistic abilities, as defined on standardized tests of vocabulary and grammatical knowledge. The majority of children are verbal but impaired in language, relative to age-matched peers. One hypothesis is that this subgroup has ASD and co-morbid specific language impairment (SLI). An experiment was conducted comparing children with ASD to children with SLI and typically developing controls on aspects of language processing that have been shown to be impaired in children with SLI: repetition of nonsense words. Patterns of performance among the children with ASD and language impairment were similar to those with SLI, and contrasted with the children with ASD and no language impairment and typical controls, providing further evidence for the hypothesis that a subgroup of children with ASD has co-morbid SLI. The findings are discussed in the context of brain imaging studies that have explored the neural bases of language impairment in ASD and SLI, and overlap in the genes associated with elevated risk for these disorders.M01 RR00533 - NCRR NIH HHS; R01 DC10290 - NIDCD NIH HHS; U19 DC03610 - NIDCD NIH HH

    The prognostic role of intragenic copy number breakpoints and identification of novel fusion genes in paediatric high grade glioma

    Get PDF
    BACKGROUND: Paediatric high grade glioma (pHGG) is a distinct biological entity to histologically similar tumours arising in older adults, and has differing copy number profiles and driver genetic alterations. As functionally important intragenic copy number aberrations (iCNA) and fusion genes begin to be identified in adult HGG, the same has not yet been done in the childhood setting. We applied an iCNA algorithm to our previously published dataset of DNA copy number profiling in pHGG with a view to identify novel intragenic breakpoints. RESULTS: We report a series of 288 iCNA events in pHGG, with the presence of intragenic breakpoints itself a negative prognostic factor. We identified an increased number of iCNA in older children compared to infants, and increased iCNA in H3F3A K27M mutant tumours compared to G34R/V and wild-type. We observed numerous gene disruptions by iCNA due to both deletions and amplifications, targeting known HGG-associated genes such as RB1 and NF1, putative tumour suppressors such as FAF1 and KIDINS220, and novel candidates such as PTPRE and KCND2. We further identified two novel fusion genes in pHGG - CSGALNACT2:RET and the complex fusion DHX57:TMEM178:MAP4K3. The latter was sequence-validated and appears to be an activating event in pHGG. CONCLUSIONS: These data expand upon our understanding of the genomic events driving these tumours and represent novel targets for therapeutic intervention in these poor prognosis cancers of childhood.We are grateful for support from the Rosetrees Trust, the Brain Tumour Charity and Fundacao para a Ciencia e Tecnologia, Portugal (PhD Studentship SFRH/BD/33473/2008). DC, AM, LB and CJ acknowledge NHS funding to the Biomedical Research Centre
    corecore