6,138 research outputs found

    Coherent-state phase concentration by quantum probabilistic amplification

    Full text link
    We propose novel coherent-state phase concentration by probabilistic measurement-induced ampli- fication. The amplification scheme uses novel architecture, thermal noise addition (instead of single photon addition) followed by feasible multiple photon subtraction using realistic photon-number resolving detector. It allows to substantially amplify weak coherent states and simultaneously reduce their phase uncertainty, contrary to the deterministic amplifier

    Nonlinear static and dynamic analysis of mixed cable elements

    Get PDF
    This paper presents a family of finite elements for the nonlinear static and dynamic analysis of cables based on a mixed variational formulation in curvilinear coordinates and finite deformations. This formulation identifies stress measures, in the form of axial forces, and conjugate deformation measures for the nonlinear catenary problem. The continuity requirements lead to two distinct implementations: one with a continuous axial force distribution and one with a discontinuous. Two examples from the literature on nonlinear cable analysis are used to validate the proposed formulation for St VenantKirchhoff elastic materials. These studies show that displacements and axial forces are captured with high accuracy for both the static and the dynamic case

    Experimental purification of coherent states

    Full text link
    We propose a scheme for optimal Gaussian purification of coherent states from several imperfect copies. The proposal is experimentally demonstrated for the case of two copies of a coherent state sent through independent noisy channels. Our purification protocol relies on only linear optics and an ancilla vacuum state, rendering this approach an interesting alternative to the more complex protocols of entanglement distillation and quantum error correction

    Experimental demonstration of coherent state estimation with minimal disturbance

    Full text link
    We investigate the optimal tradeoff between information gained about an unknown coherent state and the state disturbance caused by the measurement process. We propose several optical schemes that can enable this task, and we implement one of them, a scheme which relies on only linear optics and homodyne detection. Experimentally we reach near optimal performance, limited only by detection inefficiencies. In addition we show that such a scheme can be used to enhance the transmission fidelity of a class of noisy channels

    Squeezed state purification with linear optics and feed forward

    Get PDF
    A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a ten-fold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.Comment: 4 pages, 3 figure

    Experimental test of strongly non-classical character of a noisy squeezed single-photon state

    Get PDF
    We experimentally verify the quantum non-Gaussian character of a conditionally generated noisy squeezed single-photon state with positive Wigner function. Employing an optimized witness based on probabilities of squeezed vacuum and squeezed single-photon states we prove that the state cannot be expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian state is generated by conditional subtraction of a single photon from squeezed vacuum state. The state is probed with a homodyne detector and the witness is determined by averaging a suitable pattern function over the measured homodyne data. Our experimental results are in good agreement with a theoretical fit obtained from a simple yet realistic model of the experimental setup.Comment: 10 pages, 8 figures, REVTeX
    corecore