742 research outputs found

    Common mistakes and pitfalls in magnetic resonance imaging of the knee

    Get PDF
    This pictorial review presents an overview of common interpretation errors and pitfalls in magnetic resonance imaging (MRI) of the knee. Instead of being exhaustive, we will emphasize those pitfalls that are most commonly encountered by young residents or less experienced radiologists

    Cost-effectiveness of [18F] fluoroethyl-L-tyrosine for temozolomide therapy assessment in patients with glioblastoma

    Get PDF
    Background and Purpose: Glioblastomas are the most aggressive of all gliomas. The prognosis of these gliomas, which are classified as grade IV tumors by the World Health Organization (WHO), is poor. Combination therapy, including surgery, radiotherapy, and chemotherapy has variable outcomes and is expensive. In light of rising healthcare costs, there are societal demands for the justification of medical expenses. Therefore, we calculated the cost-effectiveness of follow-up [F-18] fluoroethyl-L-tyrosine ([F-18] FET) positron emission tomography (PET) scans performed on patients with glioblastoma after surgery and before commencing temozolomide maintenance treatment. Materials and Methods: To determine the cost-effectiveness of follow-up [F-18] FET PET procedures, we examined published clinical data and calculated the associated costs in the context of Belgian healthcare. We subsequently performed one-way deterministic sensitivity analysis and Monte Carlo analysis on the calculated ratios. Results: The decision tree based on overall survival rates showed that the number of non-responders identified using PET was 57.14% higher than the number of non-responders identified using conventional MRI. Further, the decision tree based on progression-free survival rates revealed a comparable increase of 57.50% non-responders identified. The calculated cost of two required PET scans per patient during the follow-up treatment phase was 780.50 euros. Two cost-effectiveness ratios were determined for overall survival and progression-free survival rates. Both of these calculations yielded very similar results: incremental cost-effectiveness ratios of 1,365.86 and 1,357.38 euros, respectively, for each identified non-responder. The findings of the sensitivity analysis supported the calculated results, confirming that the obtained data were robust. Conclusion: Our comparative study of conventional MRI and [F-18] FET PET revealed that the latter is a valuable tool for predicting the treatment responses of patients with glioblastomas to follow-up temozolomide maintenance treatment while considering its cost-effectiveness. Thus, [F-18] FET PET scans enable clinical outcomes to be predicted accurately and at a low cost. Moreover, given the robustness of the data in the sensitivity analyses, the level of certainty of this outcome is acceptable

    Encapsulation performance of layer-by-layer microcapsules for proteins

    Get PDF
    This study reports on the encapsulation efficiency of proteins in dextran sulfate/poly-l-arginine-based microcapsules, fabricated via layer-by-layer assembly (LbL). For this purpose, radiolabeled proteins are entrapped in CaCO3 microparticles, followed by LbL coating of the CaCO3 cores and subsequent dissolving of the CaCO3 using EDTA. To allow to improve protein encapsulation in LbL microcapsules, we studied all steps in the preparation of the microcapsules where loss of protein load might occur. The encapsulation efficiency of proteins in LbL microcapsules turns out to be strongly dependent on both the charge and molecular weight of the protein as well as on the number of polyelectrolyte bilayers the microcapsules consist of

    Generation and in vivo characterization of a chimeric αvβ5-targeting antibody 14C5 and its derivatives

    Get PDF
    Background: Previous studies showed that radiolabeled murine monoclonal antibody (mAb) 14C5 and its Fab and F(ab')2 fragments, targeting αvβ5 integrin, have promising properties for diagnostic and therapeutic applications in cancer. To diminish the risk of generating a human anti-mouse antibody response in patients, chimeric variants were created. The purpose of this study was to recombinantly produce chimeric antibody (chAb) derivatives of the murine mAb 14C5 and to evaluate the in vitro and in vivo characteristics. Methods: In vitro stability, specificity, and affinity of radioiodinated chAb and fragments (Iodo-Gen method) were examined on high-expressing αvβ5 A549 lung tumor cells. In vivo biodistribution and pharmacokinetic characteristics were studied in A549 lung tumor-bearing Swiss Nu/Nu mice. Results: Saturation binding experiments revealed high in vitro affinity of radioiodinated chAb, F(ab')2, and Fab, with dissociation constants (KD) of 1.19 ± 0.19, 0.68 ± 0.10, and 2.11 ± 0.58 nM, respectively. ChAb 14C5 showed highest tumor uptake (approximately 10%ID/g) at 24 h post injection, corresponding with other high-affinity Abs. ChF(ab')2 and chFab fragments showed faster clearance from the blood compared to the intact Ab. Conclusions: The chimerization of mAb 14C5 and its fragments has no or negligible effect on the properties of the antibody. In vitro and in vivo properties show that the chAb 14C5 is promising for radioimmunotherapy, due to its high maximum tumor uptake and its long retention in the tumor. The chF(ab')2 fragment shows a similar receptor affinity and a faster blood clearance, causing less non-specific retention than the chAb. Due to their fast blood clearance, the fragments show high potential for radioimmunodiagnosis

    Dysbaric osteonecrosis of the humerus

    Get PDF

    99mTc-labelled S-HYNIC certolizumab pegol in rheumatoid arthritis and spondyloarthritis patients : a biodistribution and dosimetry study

    Get PDF
    Background: Biologicals directed against tumour necrosis factor (TNF) have proven their efficacy in the treatment of spondyloarthritis and rheumatoid arthritis. We present a radiolabelling method for certolizumab pegol (CZP), a commercially available humanized Fab'-fragment directed against TNF. A biodistribution and dosimetry study was conducted. Tc-S-HYNIC CZP was synthesized. The in vitro TNF neutralizing activity was tested by exposing L929s-cells to various concentrations 99mTc-S-HYNIC CZP and measuring TNF-induced cytotoxicity. For biodistribution and dosimetry, WB images and blood and urine sampling were performed up to 24 h pi. Cumulative activities were estimated using mono-exponential fitting, and organ doses were estimated using OLINDA/EXM. The effective dose was calculated using the International Commission on Radiological Protection 103 recommendations. The uptake of the tracer in the peripheral joints was assessed visually and semiquantitatively. Results: In vitro tests showed blocking of TNF cytotoxicity by the Tc-99m-S-HYNIC CZP formulation comparable to the effect obtained with the unlabelled CZP with or without the HYNIC linker. We analysed eight patients with rheumatoid arthritis or spondyloarthritis. The highest mean absorbed organ doses were recorded for kidneys, spleen, and liver: 56 (SD 7), 34 (SD 6), and 33 (SD 7) mu Gy/MBq. The effective dose was 6.1 (SD 0.9) mSv for a mean injected activity of 690 (SD 35) MBq. The urinary excretion was 15.1% (SD 8.1) of the IA at 22.5 h. Blood analysis yielded a distribution half-life of 1.2 h (SD 1.5) and an elimination half-life of 26.9 h (SD 2.7). Visual analysis of the scans revealed marked tracer accumulation in the clinically affected peripheral joints. In addition, there was a statistically significant higher uptake of the tracer in the swollen joints (median uptake ratio compared to background of 3.3 in rheumatoid arthritis and 2.4 in peripheral spondyloarthritis) compared to clinically negative joints (respectively 1.3 and 1.6). Conclusions: We present a radiolabelling technique for CZP, a Fab'-fragment directed against TNF and currently used as a therapeutic agent in rheumatology. An effective dose of 6.1 mSv (SD 0.9) was estimated. We confirmed the uptake of this new radiopharmaceutical in clinically affected peripheral joints

    Automated radiosynthesis of Al[18F]PSMA-11 for large scale routine use.

    Get PDF
    Objectives: We report a reproducible automated radiosynthesis for large scale batch production of clinical grade Al[F-18]PSMA-11. Methods: A SynthraFCHOL module was optimized to synthesize Al[F-18]PSMA-11 by Al[F-18]-chelation. Results Al[F-18]PSMA-11 was synthesized within 35 min in a yield of 21 +/- 3% (24.0 +/- 6.0 GBq) and a radiochemical purity > 95%. Batches were stable for 4 h and conform the European Pharmacopeia guidelines. Conclusions: The automated synthesis of Al[F-18]PSMA-11 allows for large scale production and distribution of Al [F-18]PSMA-11
    corecore