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Abstract

For several decades, periodical dredging of river sediments has been necessary to

allow for shipping traffic on the river Scheldt. Sediments were disposed along the

shores in the alluvial plain without concern for the potential presence of

contaminants. The aim of this study was to survey the alluvial plains of the Upper

Scheldt river in Belgium for the presence of old dredged sediment landfills, and to

appraise the heavy metal contamination at these sites. Up to 82% of the areas that

were affected by dredged sediment disposal was found to be polluted by at least one

of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the

cases, higher than 26, 1900 and 2800 mg/kg, respectively. Cu and Ni concentrations

were of no environmental concern on any site. Trends in metal concentrations as a

function of location and time were explored and discussed. The highest average

concentrations of Cd, Cr, Cu, Pb and Zn were found in the most downstream quarter

of the Upper Scheldt. Contents of Pb and Cu were significantly lower for sediments

disposed after 1965, but no indication for improvement of the sediment quality with

time was observed for Cd, Cr and Zn. The pollution levels encountered warrant for

caution as most of the soils affected by historical dredged sediment disposal are

currently in use for agriculture, nature development or forestry.
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1. Introduction 

For several decades, periodical dredging of river sediments has been necessary to allow for

shipping traffic on the river Scheldt. Since the nineties dredged sediments have been disposed

in confined disposal facilities. Previously, sediments were disposed along the shores in the
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alluvial plain without concern for the potential presence of contaminants. An important

change in the Scheldt river system was affected by the broadening and deepening of the river

to allow for ship traffic up to 2000 tons. These works were executed between 1960 and 1980.

The river profile had to be broadened and deepened, leading to a changed sedimentation

pattern. The resulting dredged pure sandy soil materials were used for levelling the wet parts

of the alluvial plain. 

With respect to the river Scheldt, much research has primarily focussed on the river estuary

downstream Rupelmonde. Studies about the upstream part in contrast are scarce, although

most of the heavy metal input in the estuary is caused by upstream pollution (Regnier &

Wollast, 1993). In suspended matter and bottom sediments of the Scheldt Estuary, Verlaan et

al. (1998) and Verlaan (2000) could distinguish between a fraction of fluvial origin and a

fraction of marine origin because of the elevated concentrations of Cr, Pb, Zn, Cu and Cd in

the former. Both water quality, suspended matter quality and sediment quality is improving in

the Scheldt estuary since two decades (Zwolsman, 1999; Zwolsman et al., 1996, Baeyens,

1998). Zwolsman (1999) states that improvement of the water quality eventually will lead to

an increased mobilisation of heavy metals in the estuary because of an increased oxygen

supply to the sediment.

Important sources of heavy metal pollution in the catchment of the river Scheldt are the

transboundary industrial fluxes from Northern France. Transboundary influx of polluted water

is screened yearly at the Flemish border (VMM, 1997 ;VMM, 2000a). Approximately 90 % of

Cd and Cr in the Flemish surface water are estimated to originate from transboundary

pollution (VMM, 2000b). Seuntjens et al. (1996) developed an integrated sediment quality

assessment tool for the Flemish region. The results of this so-called triad approach revealed

that the quality of sediments in the upstream part of the Scheldt in Flanders was very bad

based on biological, ecotoxicological and physicochemical criteria (Ministerie van de

Vlaamse Gemeenschap, 1995; De Cooman et al., 1998, De Deckere et al., 2000).

Research concerning the geochemistry of heavy metals in soils derived from landfilled

dredged sediments is a recent topic and shows that adverse effects of heavy metals depend

upon the field conditions, of which redox potential and pH are of prime importance. Tack et

al. (1996) showed that the solubility of Cd, Cu, Pb and Zn as a function of pH increased

strongly in an oxidising environment compared to the reduced environment. Metal mobility

and availability in selected upland disposal sites in Flanders has been studied in considerable

detail (Singh et al., 1996; Singh et al., 1998; Tack et al., 1998; Tack et al., 1999). Sequential

extraction revealed low residual fractions compared to total contents. This may reflect an

important anthropogenic input of metals in these dredged sediment-derived soils (Zhang et al.,

1990; Vicente-Beckett, 1992). Based on DTPA extraction, Zn, Cd and Cu were estimated to

be highly plant-available (Singh et al., 1998). Elevated heavy metal concentrations in the pore

water equally raised concerns for enhanced metal availability for plant uptake (Tack et al.,

1998). In contrast, long-term leaching and migration of metals to ground water predicted from

leaching tests was estimated to be of no environmental concern (Tack et al., 1999). Field trials

where polluted dredged sediment was applied as a topsoil revealed no migration of metals or

organic pollutants 16 months after application (Ruban et al., 1998). However, depending on

the geometry of the area, metal transport from the sediment disposal site to surrounding areas

by surface runoff may be of concern (Singh et al., 2000).

Several approaches were used to evaluate sediment quality as a function of time.

Geochronology was determined by comparison of sediment analyses from different periods

(Zwolsman et al., 1996), by the use of radionuclide time tracers (Winkels et al., 1998;

Callender & Van Metre, 1997; Zwolsman et al., 1993) or by calculation of sediment

deposition rates on sampled points based on time series of monthly surveys (Wiese et al.,
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1997). An advantage of the use of deposited sediments is that they integrate the fluctuating

input of heavy metals over rather long time scales (Regnier & Wollast, 1993).

To estimate the geographical extent and the environmental consequences of historical

sediment disposal on land along inland water rivers in Flanders, a detailed survey was

initiated in 1997 on behalf of the Flemish Authorities. The primary goal of our study was to

survey the alluvial plains of the Upper Scheldt for the presence of old dredged sediment

landfills, and to measure and appraise the heavy metal contamination at these sites. Besides,

we made an attempt to study the evolution of heavy metal concentrations in these dredged

sediment-derived soils as a function of the period of landfilling and the location of the landfill

from the data.

2. Materials and methods

Study area

The study area for this research was the Flemish part of the Upper Scheldt (Fig. 1). The

catchment area of the river Scheldt covers about 21.600 km² in the north-west of France, the

west of Belgium and the south-western part of the Netherlands. The river can be divided in

three parts, the Upper Scheldt, the Scheldt river and the Scheldt estuary, which in turn is

subdivided in the fluvial, the upper and the lower estuary. The Upper Scheldt is defined as the

upstream part of the river which is not submitted to tidal influence. It comprises the section

between the source in Saint-Quentin (France) and the city of Ghent. The Scheldt river,

between Ghent and Rupelmonde, is the freshwater zone subjected to tidal influence. The

estuary is characterised by an increasing salt content towards the North Sea.

Several data sources were used to collect information about the (potential) locations and the

period of construction of historical dredged sediment landfills and about former dredging

activities. These comprised the Soil Map of Belgium at a 1:20.000 scale (Geologisch Instituut,

Gent), the archives of the Flemish Government Administration, and information obtained

from comparing topographical and vegetation indications on the various editions of the

topographical maps at a 1:25.000 scale (Nationaal Geografisch Instituut, Brussel). Based on

these data, sites that were levelled up and thus potentially have been filled could be identified.

Recent dredged sediment landfills in the area were sampled in advance to develop an

appropriate sampling strategy based on the knowledge of the landfill morphology (Fig. 2). The

physical and chemical properties of the potential landfills were investigated by taking sample

cores down to 2 m underneath the surface level. Sampling points were restricted to app. 1

point  per ha. On dredged sediment landfills the sandy material is found close to the discharge

openings while the silt is distributed relatively homogeneously in the horizontal plane over the

remaining of the discharge site (van Driel & Nijssen, 1988). Therefore, samples were taken in

the silty part of the landfill. Soil samples for analysis were taken from layers with high organic

matter content, striking texture differences, anaerobic features or from superficial layers with

exceptionally thick Ah/Ap-horizons. Also the underlying original soil layers were sampled.

The soil samples were dried at 40°C until constant weight and grounded to pass a 2 mm sieve

using a mechanic grinder (Retsch, Haan, Germany). The co-ordinates of the sampled points

were determined using differential GPS (TRIMBLE TDC2 and TSC1, Sunnyvale, CA).
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Physical and chemical analysis

Soil pH and electrical conductivity (EC) were measured in a 1:5 soil to water suspension after

stirring for 2 h. Organic carbon was determined by the method of Walkley-Black (Bremner &

Jenkinson, 1960). CaCO3 content was determined by back-titration with 0.5 M NaOH of the

excess of H2SO4 added to 1 g air-dried sediment (Nelson, 1982). The grain size distribution of

the soil samples was determined using laser diffractometry (Coulter LS200, Miami, FL). The

clay fraction is defined as the 0-6 µm fraction. This fraction was found to correlate with the 0-

2 µm fraction, determined using the conventional pipette method, except for soil samples with

clay contents > 50 % (Fig. 3) (Vandecasteele et al., submitted to European Journal of Soil

Science). The maximum clay content measured in the soil samples from the dredged sediment

landfills was below this figure (Table 4).

Soil total contents of Cd, Cr, Cu, Ni, Pb, Zn, P and S are aqua regia extractable contents

measured with ICP-AES (Varian Liberty Series II, Varian, Palo Alto, CA), Aqua regia

destruction was performed using microwave (Milestone 1200 MS Mega) with the following

program: 250 W (5 min.), 400 W (5 min.), 600 W (5 min.), 800 W (10 min.), ventilation (10

min.). Quality control of analysis was based on multi-element standards (Merck 11355 ICP

standard IV), and external and internal sediment standards. The accuracy of the method was

checked by analysis of a reference sediment material (CRM 320: river sediment). Values (in

mg/kg DM) obtained were for Cd: 0.53 (certified value: 0.533 + 0.026) , Cu: 42.9 (certified

value: 44.1 + 1.0), Zn: 124.8 (value for aqua-regia extraction with ICP: 122), Cr: 81.7 (value

for aqua-regia extraction with ICP: 79 ), Ni: 57.8 (value for aqua-regia extraction with ICP:

57), and Pb: 27.7 (value for aqua-regia extraction with ICP: 33). Maximum relative standard

deviations on a fourfold analysis of 2 soil samples from different dredged sediment landfills

(replicate analysis in 4 different months) were 6.7 % for Cd, 8.0 % for Cr, 3.5 % for Cu, 4.5 %

for Ni, 5.2 % for Pb and 11.3 % for Zn.

Evaluation of pollution

Heavy metal content of the dredged sediment landfills was evaluated with reference to the

Flemish Decree on Soil Sanitation (VLAREBO, 1996). Background concentration levels for

the Flemish soils are defined as these concentrations commonly found in soils that are

considered clean, and are a function of soil organic matter and clay content (Tack et al.,

1997). The pollution criterion and the sanitation standard values for different land use classes

were calculated based on risk assessment (Cornelis & Geuzens, 1995). Four classes of land

use were distinguished: nature, forestry and agriculture (class  1+2), habitation (class 3),

sports and recreation (class 4) and industry (class 5) (Table 1). A dredged sediment landfill

was classified as polluted in this survey if in at least one place there was at least one layer

where the pollution criterion for forestry, nature and agriculture was exceeded for one of the

measured heavy metals. 

Identification of dredged sediment landfills

In total, 682 samples from 592 sampling points were available. For many of the sites, their

former use as a dredged sediment disposal could not be ascertained by historical records.

Dredged sediment disposal sites were therefore identified based on field observations,

comparative granulometric analyses and chemical analyses. Criteria were developed, based on
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a comparison between reference data from 56 aerobic soil samples of areas positively

identified as affected by dredged sediment disposal and 36 samples from undisturbed alluvial

soils along the upper Scheldt. Full details about the procedure followed are given in

Vandecasteele et al. (2000). CaCO3 content was found to be a major distinguishing property

between alluvial soils and dredged sediment landfills in the studied area. Dredged sediment

landfills were characterised by a CaCO3 content higher than 4 %. Other chemical properties

that allowed to conclude that a location probably was affected by dredged sediment disposal

were: OM (%) x layer thickness of Ap/Ah horizont (cm) > 180, S (g/kg DM) x layer thickness

of Ap/Ah horizont (cm) > 26, EC > 400 µS/cm, C:S ratio < 30, C:P ratio < 10. Using these

criteria, 162 sampling points could be identified that likely have affected by dredged sediment

disposal.

Dataset

Data from both aerobic and anaerobic soil samples were available (162 sampling points and

211 samples). Only the aerobic dredged sediment-derived soil samples (137 samples from 117

sampling points) were used for studying of the measured concentrations of heavy metals in

relation to location along the river Scheldt and time of landfilling. 

For each sampled site, the position relative to the river and the time when the landfill was

constructed were recorded. Four sections (Fig. 4) were delineated such that the total landfill

area was approximately equally distributed over the sections. The section limits were the N60

bridge in Oudenaarde (km 26 from the Flemish border crossing), the Teirlinck old river

meander (km 50) and the Ring canal crossing in Zwijnaarde (km 59). The construction

periods of the landfills also were categorised into 2 periods, (1) constructed before 1965, and

(2) constructed after 1965. The distribution of the samples over periods and river sections is

summarised in Table 2.

Statistics

Statistical processing started with an explorative correlation analysis to detect linear relations

in the dataset. No interactions between the factor ‘period of  landfilling’ and ‘location of the

landfill’ was observed by analysis of variance (ANOVA), which implies that both factors can

be evaluated separately. First ANOVA for the factor “location of the landfill” was performed

(Mathsoft, 1999). Multiple comparison of means was performed according to the Sidak

method with 95 % simultaneous confidence intervals (Mathsoft, 1999). This is a very

conservative method which also allows for comparison of groups with a different number of

elements and in which every pair of factor values is evaluated separately. Differences between

the samples from sites landfilled before and after 1965 were compared using the two-sample

t-test (Mathsoft, 1999). Sample data were both processed unweighed and with the use of a

weight factor to account for the sediment mass represented by a sample as calculated from the

area and layer thickness of the sampled site. It was found that both approaches led to similar

conclusions. Significance levels based on unweighed data are presented.
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Results

Research in the archives of the  Flemish community revealed that in the most upstream part of

the study area small quantities of sediment were dredged on specific spots with high

sedimentation rates such as sluices, and at the Kortrijk-Bossuit canal outfall. Only once, in

1966, larger quantities section were dredged from a larger section (Table 3). In the

downstream part of the river, the situation was similar until 1968, but since 1980, when the

calibration works for ship traffic up to 2000 tons were finished, huge amounts of sediment

were dredged (Table 3). No files were available about dredging activities between 1968 and

1980. This fact can be explained by the river broadening works being executed in that period.

Since 1980, dredging was performed in a more systematic way and larger sections were

dredged in each operation.

In total 232 ha of dredged sediment landfills (83 sites) were sampled. Physico-chemical

properties of these sites are shown in Table 4. 190 Ha of this area (82 %) was found to be

polluted according to the criteria outlined before. Besides, 259 ha (71 sites) levelled up with

pure soil material from calibration works  were mapped. For another 144 ha (88 sites), the

sites were not sampled because they were built-on, they were levelled up with other material

(disposal sites) or no clear conclusions could be drawn based on soil chemical properties.

162 Sampled points were situated on dredged sediment disposal sites. On 139 points (86 %)

the pollution criterion was exceeded for at least one of the measured heavy metals. The

distribution of the measured concentrations of heavy metals over the sanitation standard

values (Fig. 5) clearly demonstrates severe pollution with Cr, Cd and Zn. Pb is a minor

contaminant, while Cu and Ni are of no environmental concern in the area. In 108 of the 139

sampled points (78 %) with soil pollution, Cr, Cd as well as Zn concentrations are above the

sanitation reference values for soil sanitation.

The results of the survey revealed a distinct geographical fragmentation of the polluted

dredged sediment landfills. The area of the landfills varied between 0.2 and more than 20 ha

and averaged to 2.4 ha. For 73 % of the spots where pollution was found, the polluted

sediment was on the surface.  For the total area of sites with a superficial polluted sediment

layer,  the thickness of the polluted layer was between 0-25 cm for 11%, between 25-50 cm

for 13%, and between 50-75 cm for 28% of the area. For 35 % of the area designated as

contaminated,  the thickness of the layer exceeded 1 meter. When the polluted dredged

sediment landfill area is plotted against the relative position downstream along the Upper

Scheldt (Fig. 6), it is observed that half of the polluted landfills are situated in the most

downstream quarter of the study area. Three-quarter of the polluted sites are situated in the

downstream half of the area. Three sites show a distinct clustering of landfills (Fig. 6):

downstream from the outfall of the canal Kortrijk-Bossuit, at Oudenaarde and the whole

downstream part from the Teirlinck old river meander. There is clearly no uniform

geographical scatter of the landfills. Both the canal mouth and the Oudenaarde sluice are

important sediment traps because of the reduced water velocity.

More than 1/3 of the area of polluted landfills was raised before 1965, while in the next 20

years more than 100 ha was landfilled (Fig. 7). The average area for landfilling was 2.1 ha in

the period before 1965, 2.9 ha between 1965 and 1975 and 9.2 ha between 1975 and 1985.

After 1985, one single landfill of 13 ha was constructed in the study area.

Correlation analysis is an indicative tool to detect linear trends in the data. An important

feature in the data of the aerobic sediment landfills was the strong positive correlation

between Cd, Cr and P.  There was also a high positive correlation between Zn on one hand

and Cd and the clay content on the other hand (Table 5). No significant correlations were
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observed between heavy metal concentrations and the soil properties used to identify dredged

sediment landfills (see Materials and Methods section), and between the relative position of

the sampled points and the soil properties.

Trends in the heavy metal contents of the sediment landfills as a function of location were

studied. The river was divided in four sections (Figure 4). ANOVA revealed that the location

of the landfill was a significant factor for all heavy metals (p < 0.001) in determining metal

concentrations in the sediment-derived surface soils (Table 6). From the multiple comparison

of means it is concluded that for Cd, Cr and Zn, the major pollutants in the area, the landfills

in the 2 downstream sections show significantly higher concentrations than in the other

sections. For Pb, the results were similar, except that the difference between section 1 and 3

was not significant.

A similar evaluation was made of the chemical and physical soil parameters. Significant

differences were detected for sand content (p < 0.05), silt content, S, CaCO3 and EC (p <

0.001). Silt and CaCO3 content were significantly lower in the most downstream section,

while S en EC were higher (Table 7). The latter parameter gives an indication for tidal

influences on the landfilled sediment. 

Temporal trends in heavy metal contents of the dredged sediment landfills were assessed by

comparison between 2 periods of landfilling, before 1965 and after 1965. From ANOVA it is

concluded that measured concentrations of Cd, Cr, Zn and Ni were not significantly different

between these periods, while levels of Cu and Pb are significantly lower (p < 0.001) in the

sites landfilled after 1965 (Table 8). For the chemical and physical soil parameters silt (p <

0.001) and organic matter (p < 0.05) content decreased significantly, while P and CaCO3

concentrations increased since 1965 (p < 0.001). 

Discussion

This survey gives important information about the pollution of the terrestrial compartment of

the Upper Scheldt river system which is connected to pollution of the water body through

dredging activities. Landfilling of dredged sediments caused a pollution with a more

permanent character than the sediment pollution itself. When sediments settle and accumulate

on locations with reduced current, reduction processes effectively immobilise metals in the

sediments (Gambrell, 1994), thus decreasing heavy metal bio-availability. The upper layers of

the sediment are subjected to a limited resuspension and may release pollutants to the water

column (Tessier et al., 1989; Boughriet et al., 1992). Resuspended matter transported in the

Scheldt river will be trapped in the high turbitity zone around Antwerp (Verlaan, 2000;

Regnier & Wollast, 1993). This area is dredged yearly and the sediment is disposed in

overdepths or on-land at confined disposal sites. 

Landfilled calcareous dredged sediments with high OM and clay contents are characterised by

a very low leaching potential (Tack et al., 1999) but may exhibit an appreciable bio-

availability of the heavy metals (Singh et al., 1998; Tack et al., 1999; Stephens et al., 2001). A

significant decline in heavy metal concentrations in these terrestric parts of the river alluvium

is therefore not expected to occur within decades, while in contrast further improvement of the

aquatic part of the ecosystem can be expected. Beyer & Stafford (1993) calculated that bio-

concentration of Cd by earthworms is a risk for higher trophic levels in the foodweb when

concentrations in dredged sediment-derived soils exceed 10 mg Cd/kg DM. This

concentration is exceeded in the superficial layer of the dredged sediment landfills along the

Upper Scheldt in more than half of the sampled disposal sites.
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Dredged sediment landfills are mostly concentrated in the downstream section of the Upper

Scheldt. These landfills are characterised by the highest heavy metal concentrations in the

study area. Nevertheless, heavy metal contamination of the river is mainly due to

transboundary influx. This pollution thus is to an important extent transported to the most

downstream section of the Upper Scheldt. A combination of factors, higher sedimentation

rates and more opportunities for the construction of landfills, gave raise to more landfilling in

the downstream section.

Conclusions with respect to changes in sediment quality with time from the current data are

valid provided that total concentrations were not significantly altered since disposal.

Acidification is a potential process that may lead to a strong mobilisation and leaching of

heavy metals in oxidising sediments (Gambrell et al, 1991). Dredged sediment-derived soils

along the river Scheldt are characterised by appreciable CaCO3-levels (>4 %). Significant

leaching of metals thus did not occur and it can be assumed that metal contents in the dredged

sediment-derived soils reflects metal contents in the Scheldt river at the time of dredging. 

Interpretation of results to detect temporal trends was hampered because of the unbalanced

distribution of samples over the selected periods. Only for Cu and Pb a distinct decline in

concentrations since 1965 was revealed. There was also a decrease in organic matter and silt

content. Both Pb and Cu are known to show a great affinity to organic matter. Data on

historical organic matter content of sediments in the Scheldt is lacking, but Wollast (1988)

calculated that in 1978 2/3 of the fluvial suspended matter in the Scheldt was related to

antropogenic activities. It was characterised by organic matter contents of 40 to 60 %, while

the current organic matter content in the suspended matter is 10-15 % (Wollast, 1988).

Zwolsman (1999) calculated the average OM content of the fluvial suspended matter in 1987-

1988 to be 14 %. Dredged sediments of the river Scheldt are characterised by an initially very

high organic matter content compared to normal contents in upland soils in this region. Even

in the Scheldt estuary, the organic fraction of fluvial material is considerably higher than in

marine material (Verlaan et al., 1998). A consequence of landfilling is a decrease in organic

matter contents with time which is strongly influenced by landuse (Singh et al., 1998; Ruban

et al., 1998). Ruban et al. (1998) observed a 35 % decline after 28 months in landfilled

dredged sediment with an initial high organic matter content (16 %). Despite the breakdown

of organic matter which probably already took place since the period of landfilling, it was

found in this study that the organic matter content in the dredged sediment landfills

constructed before 1965 is higher than in the landfills constructed afterwards (Table 8). This

finding is in accordance with the trend of the decreasing organic matter content of the fluvial

suspended matter reported by Wollast (1988).

At least, for Cd, Cr and Zn it can be concluded that concentrations in the dredged sediment

were very high in the period before 1965 and that no obvious quality improvement was

observed in the period after 1965. Extrapolation of the quality of dredged sediments to that of

the river sediment is however very complex. Zwolsman et al. (1996) found a distinct

improvement in sediment and suspended matter quality in the Scheldt estuary, especially in

the most polluted fluvial estuary. In the suspended matter, the authors found decreasing

concentrations of Zn since 1972, a peak of Cd around 1980 and a peak of Cr between 1970

and 1975, followed by a drastic decline for both elements. These trends could not be

confirmed or denied for the Upper Scheldt since the data only allowed for a reliable

comparison between the situation before and after 1965. Results of the spatial trend of heavy

metal contamination in landfilled dredged sediment must not be translated straightforward to

the quality of the river sediment. Recent landfills were used for disposal of dredged sediments

from different locations and larger sections. The relation between sediment quality before and

after dredging and landfilling is also not known.
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Conclusions

Dredged and landfilled Upper Scheldt sediments were strongly polluted with Cr, Zn, Cd and

Pb a long time before 1965 and no clear quality improvement is observed since. Landfilling of

heavy metal contaminated dredged sediments caused an important contamination in the

terrestrial part of the alluvial system. The ecological restoration of these dredged sediment-

derived soils will be a time-consuming process. However, the presence of dredged sediment

landfills in the alluvial plain is an indirect consequence of polluted sediments in the river

Scheldt which is easily forgotten. Further efforts to reduce inputs in the river bodies remains a

priority. While dredging activities and natural processes of sorption/desorption, suspension

and flocculation may eventually lead to a gradual improvement in the river sediment quality,

pollution of these terrestrial sites with heavy metals has a more permanent character.
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Table 1. The pollution criterion and the sanitation standard values of the Flemish Decree on

SoilRecovery for 2 extreme soil types (clay content: 2 and 50%, organic matter content: 1 and

20%) as a function of land use

12

Cd Cr Zn Pb Cu Ni

background 

concentration level

0.5 - 2.9 32 - 61 50 - 148 35 - 93 14 - 29 7 - 22

pollution criterion 

for agriculture and 

nature

1 - 5.8 89 - 171 385 - 1145 140 - 370 134 - 273 61 - 198

sanitation standard 

value for agriculture 

and nature

1.2 - 7.2 111 - 214 481 - 1432 175 - 463 168 - 341 77 - 247

sanitation standard 

value for habitation

3.6 - 21.8 256 - 495 802 - 2386 614 - 1621 336 - 682 361 - 1162

sanitation standard 

value for recreation

9 - 54.4 427 - 824 802 - 2386 1315 - 3473 420 - 853 423 - 1360

sanitation standard 

value for industry

18 - 108.8 683 - 1319 2405 - 7159 2192 - 5788 673 - 1365 538 - 1731



Table 2. Number of aerobic samples from dredged sediment landfills per time period and

section

period section 1 section 2 section 3 section 4 total

<  1965 29 6 16 21 72

>  1965 0 30 20 10 60

unknown 1 0 4 0 5

total 30 36 40 31 137

Sections: 1: from the Flemish border crossing to the N60 Bridge in Oudenaarde; 2: from the N60 

Bridge in Oudenaarde to the Teirlinck old river meander; 3: from the Teirlinck old river

meander to the Ring canal in Zwijnaarde, 4: from the Ring canal to the center of the city

Ghent
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Table 3. Amounts of dredged material as a function of time in the upstream and downstream

part of thebridge of Kerkhove

14

dredged amounts (in 10
3
 m

3
) in the upstream part of Kerkhove bridge

1933 (2.2); 1934 (1.9); 1935 (1.9); 1936 (12.6); 1939 (3.1); 1941 (17.8); 

1942 (2.8); 1943 (12.4); 1946 (2.7); 1947 (16.7); 1952 (6.6); 1962 (6.0); 1966 (30.2)

dredged amounts (in 10
3
 m

3
) in the downstream part of Kerkhove bridge

1944 (4.1); 1945 (63.7); 1946 (36.0); 1957 (22.6); 1962 (29.8); 1963 (52.3);  

1968 (23.9); 1980 (571.2); 1982 (306.8); 1983 (22.7); 1987 (157.7)



Table 4. Descriptive data for the landfilled dredged sediment samples

15

mean median Stdev. min. 10th perc. 90th perc. Max.

Cd (mg/ kg DM) 11.9 14.5 10.5 0.5 1.3 26.6 47.2

Cr (mg/ kg DM) 732 1190 724 31 113 1901 2769

Cu (mg/ kg DM) 107 125 65 5 21 208 316

Ni (mg/ kg DM) 31 33 11 7 17 47 70

Pb (mg/ kg DM) 233 220 180 5 34 414 1281

Zn (mg/ kg DM) 1455 1881 984 63 216 2857 4224

% clay 32 38 7 14 23 42 47

% silt 52 47 8 22 41 59 67

% sand 16 14 13 1 3 34 64

P (g/ kg DM) 3.3 4.4 1.8 0.9 1.4 6.2 7.1

S (g/ kg DM) 2.6 2.8 1.9 0.9 1.1 4.9 12.8

N (g/ kg DM) 0.04 0.04 0.01 0.02 0.02 0.05 0.09

% CaCO 3 7.4 7.7 2.2 4.0 4.6 10.3 13.7

% OS 8.2 7.9 2.7 3.5 4.8 11.6 16.3

pH-H 2O 7.6 7.5 0.2 7.0 7.3 7.8 8.0

pH-CaCl2 7.3 7.3 0.2 6.9 7.1 7.6 7.7

EC (µS/ cm) 680 759 619 139 190 1836 2290

dry matter (%) 71.1 67.7 12.1 55.4 63.6 78.7 85.2

% LOI 14.8 13.7 4.0 6.1 9.8 20.6 22.7



Table 5. Regression coefficients (R2) for heavy metals, P and organic matter

elements Regression coefficients correlation

Cd - Cr 0,548**** +

Cd - Pb 0,809**** +

Cd - Zn 0,640**** +

Cr - P 0,824**** +

Cu - OM 0,337**** +

Cr - OM 0,072*** +

Cd - OM 0,181**** +

Ni - OM 0,200**** +

Pb - OM 0,265**** +

Zn - OM 0,385**** +

**** p < 0.0001, *** p < 0.001
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Table 6. Average concentration of heavy metals (mg/kg dry soil) for the dredged sediment

landfills as a function of location (river sections, see Figure 4). Means that are not

significantly different are denoted with the same letter (Sidak multiple comparison of means

at the 95 % level of significance)

section 1 section 2 section 3 section 4

Cd 8.7 a 6.6 a 16.2 b 15.4 b

Cr 439 a 317 a 1015 b 1129 b

Cu 84 a 77 a 107 a 164 b

Ni 28 ab 26 a 36 c 33 bc

Pb 192 ab 121 a 284 bc 337 c

Zn 1098 a 738 a 1834 b 2143 b
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Table 7. Average concentration of chemical en physical soil parameters for the dredged

sediment landfills as a function of location (river sections, see Figure 4). Means that are not

significantly different are denoted with the same letter (Sidak multiple comparison of means

at the 95 % level of significance) 

section 1 section 2 section 3 section 4

clay (%) 30.8 a 33.6 a 33.3 a 30.7 a

silt (%) 55.4 b 52.1 b 53.5 b 47.1 a

sand (%) 13.8 ab 14.2 ab 13.2 a 22.2 b

S (g/ kg DM) 2.1 a 2.7 ab 2 a 3.7 b

OM (%) 7.8 a 7.9 a 8.7 a 8.4 a

CaCO3 (%) 7.4 ab 8.6 b 6.9 b 6.7 a

EC (µS/ cm) 402 a 718 a 432 a 1148 b
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Table 8. Average concentration of heavy metals and other soil characteristics for the dredged

sediment landfills as a function of time. Only the significant differences are shown

19

Cu (mg/ kg DM) Pb (mg/ kg DM) silt (%) OM (%) CaCO3 (%) P (g/ kg DM)

before 1965 121 294 53.7 8.6 7.0 2.7

after 1965 92 161 49.7 7.6 8.1 4.0



Fig. 1. The Scheldt Estuary and the Upper Scheldt river with the study area indicated.

Fig. 2. Normal structure of a dredged sediment landfill in a horizontal en vertical view with

indication of important physical features.

Fig. 3. Scatterplot of the pipette 0-2 µm fraction and the laser diffractometry 0-6 µm fraction.

The 1:1 ratio line is also shown.

Fig. 4. The sections distinguished in the study area. Sections: 1: from the Flemish border

crossing to the N60 Bridge in Oudenaarde; 2: from the N60 Bridge in Oudenaarde to the

Teirlinck old river meander; 3: from the Teirlinck old river meander to the Ring canal in

Zwijnaarde, 4: from the Ring canal to the center of the city Ghent. The area displayed on the

map is the study area indicated on Fig. 1.

Fig. 5. Classification of the heavy metal concentrations of the samples of the dredged

sediment landfills over the sanitation standard values of the Flemish Decree on Soil Recovery.

The number of samples in each class is shown on the Y-axis.

Fig. 6. Cumulative distribution of polluted dredged sediment landfills as a function of the

relative position along the Upper Scheldt. 

Fig. 7. Distribution of the area and the number of polluted dredged sediment landfills over the

4 periods.
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Fig. 2
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Fig. 5.

25



0

5 0

1 0 0

1 5 0

2 0 0

0 2 0 4 0 6 0 8 0 1 0 0

re la tive  p o s itio n  (%)

a
re
a
 p
o
ll
u
te
d
 l
a
n
d
fi
ll
s 
(h
a
) T id a l B ra n c h  

Z w ijn a a rd e

T e irlin c k  m ean d e r

Slu ic e  

O u d en a a rd e

m o u t h  o f c a n a l K o rt rijk -B o ssu it

Fig. 6.

26



0

10

20

30

40

50

60

70

80

< 1965 1965-1975 1975-1985 > 1985

area (ha)

number

Fig. 7.

27


	1. Introduction
	2. Materials and methods
	Study area
	Physical and chemical analysis
	Evaluation of pollution
	Identification of dredged sediment landfills
	Dataset
	Statistics

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

