109 research outputs found
Logical and Algebraic Characterizations of Rational Transductions
Rational word languages can be defined by several equivalent means: finite
state automata, rational expressions, finite congruences, or monadic
second-order (MSO) logic. The robust subclass of aperiodic languages is defined
by: counter-free automata, star-free expressions, aperiodic (finite)
congruences, or first-order (FO) logic. In particular, their algebraic
characterization by aperiodic congruences allows to decide whether a regular
language is aperiodic.
We lift this decidability result to rational transductions, i.e.,
word-to-word functions defined by finite state transducers. In this context,
logical and algebraic characterizations have also been proposed. Our main
result is that one can decide if a rational transduction (given as a
transducer) is in a given decidable congruence class. We also establish a
transfer result from logic-algebra equivalences over languages to equivalences
over transductions. As a consequence, it is decidable if a rational
transduction is first-order definable, and we show that this problem is
PSPACE-complete
First-order definable string transformations
The connection between languages defined by computational models and logic
for languages is well-studied. Monadic second-order logic and finite automata
are shown to closely correspond to each-other for the languages of strings,
trees, and partial-orders. Similar connections are shown for first-order logic
and finite automata with certain aperiodicity restriction. Courcelle in 1994
proposed a way to use logic to define functions over structures where the
output structure is defined using logical formulas interpreted over the input
structure. Engelfriet and Hoogeboom discovered the corresponding "automata
connection" by showing that two-way generalised sequential machines capture the
class of monadic-second order definable transformations. Alur and Cerny further
refined the result by proposing a one-way deterministic transducer model with
string variables---called the streaming string transducers---to capture the
same class of transformations. In this paper we establish a transducer-logic
correspondence for Courcelle's first-order definable string transformations. We
propose a new notion of transition monoid for streaming string transducers that
involves structural properties of both underlying input automata and variable
dependencies. By putting an aperiodicity restriction on the transition monoids,
we define a class of streaming string transducers that captures exactly the
class of first-order definable transformations.Comment: 31 page
Synthesis of Data Word Transducers
In reactive synthesis, the goal is to automatically generate an
implementation from a specification of the reactive and non-terminating
input/output behaviours of a system. Specifications are usually modelled as
logical formulae or automata over infinite sequences of signals
(-words), while implementations are represented as transducers. In the
classical setting, the set of signals is assumed to be finite. In this paper,
we consider data -words instead, i.e., words over an infinite alphabet.
In this context, we study specifications and implementations respectively given
as automata and transducers extended with a finite set of registers. We
consider different instances, depending on whether the specification is
nondeterministic, universal or deterministic, and depending on whether the
number of registers of the implementation is given or not.
In the unbounded setting, we show undecidability for both universal and
nondeterministic specifications, while decidability is recovered in the
deterministic case. In the bounded setting, undecidability still holds for
nondeterministic specifications, but can be recovered by disallowing tests over
input data. The generic technique we use to show the latter result allows us to
reprove some known result, namely decidability of bounded synthesis for
universal specifications
Register Transducers Are Marble Transducers
Deterministic two-way transducers define the class of regular functions from words to words. Alur and Cerný introduced an equivalent model of transducers with registers called copyless streaming string transducers. In this paper, we drop the “copyless” restriction on these machines and show that they are equivalent to two-way transducers enhanced with the ability to drop marks, named “marbles”, on the input. We relate the maximal number of marbles used with the amount of register copies performed by the streaming string transducer. Finally, we show that the class membership problems associated with these models are decidable. Our results can be interpreted in terms of program optimization for simple recursive and iterative programs.SCOPUS: cp.pinfo:eu-repo/semantics/publishe
Iterated Regret Minimization in Game Graphs
Iterated regret minimization has been introduced recently by J.Y. Halpern and
R. Pass in classical strategic games. For many games of interest, this new
solution concept provides solutions that are judged more reasonable than
solutions offered by traditional game concepts -- such as Nash equilibrium --.
Although computing iterated regret on explicit matrix game is conceptually and
computationally easy, nothing is known about computing the iterated regret on
games whose matrices are defined implicitly using game tree, game DAG or, more
generally game graphs. In this paper, we investigate iterated regret
minimization for infinite duration two-player quantitative non-zero sum games
played on graphs.
We consider reachability objectives that are not necessarily antagonist.
Edges are weighted by integers -- one for each player --, and the payoffs are
defined by the sum of the weights along the paths. Depending on the class of
graphs, we give either polynomial or pseudo-polynomial time algorithms to
compute a strategy that minimizes the regret for a fixed player. We finally
give algorithms to compute the strategies of the two players that minimize the
iterated regret for trees, and for graphs with strictly positive weights only.Comment: 19 pages. Bug in introductive example fixed
The Adversarial Stackelberg Value in Quantitative Games
In this paper, we study the notion of adversarial Stackelberg value for two-player non-zero sum games played on bi-weighted graphs with the mean-payoff and the discounted sum functions. The adversarial Stackelberg value of Player 0 is the largest value that Player 0 can obtain when announcing her strategy to Player 1 which in turn responds with any of his best response. For the mean-payoff function, we show that the adversarial Stackelberg value is not always achievable but ?-optimal strategies exist. We show how to compute this value and prove that the associated threshold problem is in NP. For the discounted sum payoff function, we draw a link with the target discounted sum problem which explains why the problem is difficult to solve for this payoff function. We also provide solutions to related gap problems
Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games
Classical analysis of two-player quantitative games involves an adversary (modeling the environment of the system) which is purely antagonistic and asks for strict guarantees while Markov decision processes model systems facing a purely randomized environment: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. We introduce the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. We consider both the mean-payoff value problem and the shortest path problem. In both cases, we show how to decide the existence of finite-memory strategies satisfying the problem and how to synthesize one if one exists. We establish algorithms and we study complexity bounds and memory requirements
Synthesis from Weighted Specifications with Partial Domains over Finite Words
info:eu-repo/semantics/publishe
- …