432 research outputs found

    The role of titanium dioxide on the behaviour and fate of plastics in the aquatic environment.

    Get PDF
    Although titanium dioxide (TiO2) is the most widely used pigment in plastics, there is limited quantitative information available for consumer goods and environmental samples. Moreover, and despite its photocatalytic activity, the potential impacts of TiO2 on the behaviour and fate of environmental plastics has received little attention. This paper compiles measurements of Ti in plastic samples from aquatic environments and in consumer goods that are known to make important contributions to environmental pollution. These data, along with a critical evaluation of experimental studies using TiO2-pigmented plastics, are used to formulate an understanding of how the pigment modifies the properties and persistence of environmental plastics. Titanium is heterogeneously distributed amongst different categories and sources of plastic, with concentrations ranging from <1 mg kg-1 in transparent-translucent materials to over 50,000 mg kg-1 in brightly coloured samples. Concentrations towards the higher end are sufficient to change positively buoyant polyolefins into negatively buoyant plastics, suggesting that environmental fractionation based on Ti content might occur. Accelerated leaching of TiO2 from aged plastic has been demonstrated empirically, and while mobilised particles are reported within a size range greater than biotically-active titania nanoparticles, modeling studies suggest that the latter could be derived from TiO2 pigments in the environment. Although rutile appears to be the most important polymorph of TiO2 in non-fibrous plastics, the degree and type of engineered surface modification in consumer and environmental plastics are generally unknown. Surface modification is likely to have a significant impact on the photo-oxidative degradation of plastics and the mobilization of fine (and, possibly, nano-sized) TiO2 particles and requires further research

    Hazardous chemical elements in cleaning cloths: A potential source of microfibres.

    Get PDF
    Although potentially hazardous chemical elements (e.g., Cu, Cr, Pb, Sb, Ti, Zn) have been studied in clothing textiles, their presence in cleaning textiles is unknown. In this study, 48 cleaning cloth products (consisting of 81 individual samples) purchased in Europe, and consisting of synthetic (petroleum-based), semi-synthetic or natural fibres or combinations of these different types, have been analysed for 16 chemical elements by X-ray fluorescence (XRF) spectrometry. Titanium was detected in most cases (median and maximum concentrations ~3700 and 12,400 mg kg-1, respectively) and Raman microspectroscopy revealed that TiO2 was present as anatase. Barium, Br, Cr, Cu, Fe and Zn were frequently detected over a range of concentrations, reflecting the presence of various additives, and Sb was present at concentrations up to about 200 mg kg-1 in samples containing polyester as catalytic residue from the polymerisation process. Lead was detected as a contaminant in four samples and at concentrations below 10 mg kg-1. Overall, the range of the chemical element profiles and concentrations was similar to those for clothing materials published in the literature, suggesting that broadly the same additives, materials and processes are employed to manufacture cloths and clothing textiles. The mechanisms by which potentially hazardous chemical elements are released into the environment with microfibres or mobilised into soluble or nano-particulate forms remain to be explored

    Towards the global plastic treaty: a clue to the complexity of plastics in practice

    Get PDF
    Following the decision of the United Nations Environment Assembly (UNEA) to start negotiations for a legally binding treaty to end plastic pollution, discussions and reflections are ongoing on why and how plastic chemicals and polymers of concern should be integrated into the global plastics treaty. One of the points that has been identified as requiring attention is the reduction of the complexity of the composition of plastic objects. This article, addressed to decision-makers and other stake-holders involved in the negotiations, illustrates in a practical and graphical way what complexity means in the case of the presence of inorganic additives

    Hazardous metal additives in plastics and their environmental impacts

    Get PDF
    Historically, many additives and catalysts used in plastics were based on compounds of toxic metals (and metalloids), like arsenic, cadmium, chromium(VI), and lead. Despite subsequent restrictions, hazardous additives remain in plastics in societal circulation because of the pervasiveness of many products and the more general contamination of recycled goods. However, little is understood about their presence and impacts in the environment, with most studies focusing on the role of plastics in acquiring metals from their surroundings through, for example, adsorption. Accordingly, this paper provides a review of the uses of hazardous, metal-based additives in plastics, the relevant European regulations that have been introduced to restrict or prohibit usage in various sectors, and the likely environmental impacts of hazardous additives once plastics are lost in nature. Examination of the literature reveals widespread occurrence of hazardous metals in environmental plastics, with impacts ranging from contamination of the waste stream to increasing the density and settling rates of material in aquatic systems. A potential concern from an ecotoxicological perspective is the diffusion of metals from the matrix of micro- and nanoplastics under certain physico-chemical conditions, and especially favorable here are the acidic environments encountered in the digestive tract of many animals (birds, fish, mammals) that inadvertently consume plastics. For instance, in vitro studies have shown that the mobilization of Cd and Pb from historical microplastics can greatly exceed concentrations deemed to be safe according to migration limits specified by the current European Toy Safety Directive (17 mg kg−1 and 23 mg kg−1, respectively). When compared with concentrations of metals typically adsorbed to plastics from the environment, the risks from pervasive, historical additives are far more significant

    Polyvinyl chloride in consumer and environmental plastics, with a particular focus on metal-based additives

    Get PDF
    Polyvinyl chloride (PVC) is one of the most widely used thermoplastics but is also a material of concern because of the generation and release of harmful chemicals during its life cycle.</jats:p

    Chemical characteristics of artificial plastic plants and the presence of hazardous elements from the recycling of electrical and electronic waste

    Get PDF
    Because of their convenience, the demand for decorative plastic plants has been increasing over recent years. However, no information exists on the origin or nature of the polymers employed or the type of additives used in order to understand potential environmental impacts and inform safe and sustainable disposal or recycling practices. In this study, 203 parts or offcuts from 175 plastic plants acquired from European shops and venues have been analysed by X-ray fluorescence spectrometry to determine elemental content, while a selection has been analysed by infrared spectrometry to establish polymer type. The (usually green) moulded components (n = 159) were commonly constructed of polyethylene or polypropylene, while leaves and colourful petals (n = 40) were generally made of polyethylene terephthalate fabric that had been glued to the moulded component. However, both components also exhibited evidence of being coated with a resin or adhesive for support, protection or appearance. Barium, Fe, Ti and Zn-based additives were commonly encountered but more important from an environmental and health perspective were variable concentrations of potentially hazardous elements in the moulded parts: namely, Br (6.1 to 108,000 mg kg-1; n = 78), Pb (7.6 to 17,400 mg kg-1; n = 53) and Sb (58.6 to 70,800 mg kg-1; n = 17). These observations suggest that many of the moulded components are derived from recyclates that are contaminated by waste electronic and electrical plastic, introducing brominated flame retardants, the flame retardant synergist, Sb2O3, and Pb into the final product. There are no standards for these chemicals in plastic plants, but regulations for electronic plastic, toy safety and packaging are frequently exceeded or potentially exceeded. Widespread contamination of plastic plants may impose constraints on their recycling and disposal
    corecore