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Abstract 12 

Concentrations of antimony have been determined for paints and enamels that are available to 13 

the consumer or accessible to the public by x-ray fluorescence spectrometry. The metalloid was 14 

only present in consumer paints of a speciality (e.g. artistic) nature, but was common in old 15 

household paints as an anti-chalking agent and in brightly-coloured contemporary exterior 16 

paints (on roads, street furniture and playground equipment, for example) as a colour fastener 17 

with concentrations ranging from a few hundred to about 25,000 g g-1. Antimony was also 18 

found in contemporary container glass and ceramic products as an additive or opacifier and as 19 

a colour fastener in enamels at concentrations up to a few thousand g g-1. Overall, the yellow 20 

pigment, lead antimonite, was only evident in two ceramic products, with Sb concentrations 21 

exceeding 62,800 g g-1. Available data in the literature suggests that, while Sb concentrations 22 

up to 30 g g-1 are bioaccessible in exterior paints and that concentrations of up to 20 mg L-1 23 

are migratable in some ceramicware, no relevant regulations are currently in place. Given our 24 

lack of understanding of the health impacts of Sb, more studies on its toxicity and mobility from 25 

commonly encountered products are required.  26 

 27 
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1. Introduction 29 

Antimony (Sb) has been used as a pigment, and mainly as antimony sulphide and lead 30 

antimonite, for several thousand years (Aldersey-Williams, 2011; Schwarz-Schampera, 2014). 31 

Currently, Sb has the status of a technologically-critical element that is essential for economic 32 

development, and although the principal present uses are in antimonial lead, as a flame retardant 33 

synergist in textiles and plastics and as a catalyst (e.g. in the production of polyethylene 34 

terephthalate, PET), the element is still used in pigments, ceramic glaze and glass (Orisakwe, 35 

2012; Dupont et al., 2016). The most recent European data available indicate that Sb employed 36 

as an additive in glass manufacture represents 1% (250 t) of total use while application in 37 

pigments, paints and ceramics constitutes about 4.5% (1100 t); these values compare with 3.9% 38 

in PET production and 32.9% in flame retardant synergist manufacture (European 39 

Communities, 2008). In addition to these applications, Sb readily and widely contaminants 40 

many contemporary consumer plastics at low levels through the recycling of electronic and 41 

PET-based products (Turner and Filella, 2017).  42 

While the behaviour of Sb in different environmental compartments is relatively well-known, 43 

or at least has been extensively studied (Filella et al., 2009), the toxicological implications of 44 

its pervasiveness in everyday products are far less understood. Specifically, the occurrence and 45 

fate of Sb as a catalyst or synergist have received recent attention (Haldimann et al., 2013; 46 

Snedeker, 2014; Turner and Filella, 2017), with concentrations migratable from the matrix 47 

regulated for (PET) food containers (European Commission, 2005) and children’s toys 48 

(European Parliament and the Council of the European Union, 2009). However, its occurrence, 49 

function, mobility and potential impacts in contemporary paints, consumer glass and 50 

ceramicware are poorly documented, despite the obvious exposure routes arising from these 51 

applications. 52 
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In this study, we examined the occurrence of Sb in the paints and enamels of various consumer 53 

goods and everyday items that have been purchased new or that are in circulation and in extant 54 

applications on structures which the public are exposed to and where the presence and/or 55 

mobility of other elements, like Cd, Cr(VI) and Pb, are highly regulated on environmental and 56 

health grounds (Sheets, 1999; Turner, 2019). Measurements of Sb were made in situ or in the 57 

laboratory by energy dispersive x-ray fluorescence (XRF) spectrometry and relevant 58 

information in the literature on its migration from any applications was reviewed. The 59 

investigation complements an earlier study that determined the occurrence and distribution of 60 

Sb as catalytic residue or a flame retardant synergist in consumer plastics using the same 61 

protocols and techniques (Turner and Filella, 2017). 62 

2. Materials and methods 63 

About 400 measurements of Sb have been performed on distinct regions (in terms of colour or 64 

texture) of 335 samples acquired from or located within south west England. Many of the 65 

samples had been measured as part of independent research projects (Turner et al., 2015; Turner 66 

et al., 2016; Turner and Solman, 2016; Turner, 2019a) and here published and unpublished data 67 

on Sb have been compiled, while other samples were analysed specifically for the purposes of 68 

the present study. The painted and enameled samples are described and categorised below. 69 

(1) “Interior extant paint” on interior walls, doors, frames, skirting boards and floors of 70 

various private households in the city of Plymouth ranging in age from 50 to 100 years; 71 

(2) “Exterior extant paint” on the exteriors of these and other private households and 72 

including walls, guttering and timber; 73 

(3) “Municipal extant paint” on external wooden, tarmacked and metallic structures and 74 

street furniture accessible to the public in the city of Plymouth, including roads, post 75 

boxes, phone boxes, benches, gates and playground equipment; 76 
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(4) “Extant boat paint” applied to the hull, decking and cabin of pleasure craft or small 77 

commercial vessels located on the coastal foreshores in the vicinity of Plymouth and 78 

that were either abandoned or in use; 79 

(5) “Consumer paint” for internal and external decoration or for artwork and that had been 80 

purchased within the past five years; 81 

(6) “Painted toys/equipment”: the paint on wooden and metallic toys and other consumer 82 

items (e.g. tools, storage tins, artefacts) around the household; 83 

(7) “Consumer bottle enamel”: the decorated enamels on glass for the containment and sale 84 

of wine, beer and food products; 85 

(8) “Drinking glass enamel”; the enamels on glassware for drinks and other food-contact 86 

items purchased new or secondhand;  87 

(9) “Ceramicware enamel”: the enameled decorations and glaze of (mainly food-contact) 88 

ceramicware in circulation and purchased new or secondhand or loaned from 89 

colleagues. 90 

For each sample, the condition and principal colour (or colours) were noted, along with any 91 

distinguishing signage (e.g. place of manufacture). For intact extant paints, and to avoid 92 

disturbance or damage to the surface, Sb and other elements that included Br, Cl, Ni, Pb, Ti and 93 

Zn, were measured in situ and on each distinctive colour and, where possible, the undecorated 94 

substrate of structures using a battery-operated Niton XL3t 950 He GOLDD+ portable XRF 95 

spectrometer. Here, the 8-mm diameter detector window of the instrument, containing the 200 96 

A-50 kV x-ray source and large area drift detector, was pointed directly over the area to be 97 

measured with the aid of real-time video footage projected on to the touchscreen display 98 

through a charged-couple device camera. Counting was activated by the trigger mechanism of 99 

the XRF spectrometer for a period of between 30 and 60 seconds in a “plastics” mode, whose 100 

performance has been verified by independent measurements of acid digests by inductively 101 
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coupled plasma spectrometry (Turner, 2019b). Successive measurements were made at 50 kV-102 

40 A and 20 kV-100 A and employing a thickness correction of between 0.05 and 0.1 mm. 103 

For flakes of paint carefully retrieved from structures, new paints purchased in hardware stores 104 

that had been applied by brush to a series of glass or cardboard slides and air-dried for 24 to 48 105 

h, and new and secondhand ceramic and glass products of less than 200 mm in length, the XRF 106 

was operated under the same conditions but in the laboratory while housed nose-upwards in an 107 

accessory stand and activated remotely via USB. To discriminate Sb present in any décor of 108 

these products from Sb in the glass or ceramic glaze, readings were also taken on undecorated 109 

regions of the substrate, where possible. For products greater than 200 mm in length the surface 110 

to be measured was cradled in a radiation apron on a stainless steel table and the XRF operated 111 

likewise but handheld. 112 

Elemental concentrations (in g g-1) were derived from secondary (fluorescent) x-ray spectral 113 

peaks using standardless fundamental parameters software. Polyethylene Niton reference discs 114 

impregnated with various elements (including Sb) were analysed at regular intervals throughout 115 

each measurement session and returned concentrations that were within 15% of certified values. 116 

The limit of detection for Sb, defined as three standard counting errors of background intensity 117 

(and derived from errors in samples that did not return a signal for Sb) varied according to the 118 

precise matrix and thickness but was generally in the range 40 to 100 g g-1. Precision, derived 119 

from quintuplicate measurements of the same location on a range of samples, was always better 120 

than 20%.  121 

 122 

3. Results and discussion 123 

3.1. Occurrence, sources and concentrations of Sb 124 
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Table 1 shows the number of samples considered in each category and the number of cases in 125 

which Sb was detected by XRF spectrometry, along with summary statistics of Sb 126 

concentrations. Note that where Sb was detected at multiple locations of a sample (for example, 127 

on distinctly different colours), the average detectable concentration and principal colour have 128 

been recorded. Also shown in Table 1 for each category are the colours of the samples that 129 

returned the highest Sb concentrations and the most common colours that returned detectable 130 

Sb, as well as the number of cases in which Sb was detected with Pb at a concentration above 131 

100 g g-1. 132 

Overall, Sb was detected in at least one region of about a third of all samples tested and detection 133 

frequency exceeded 30% for extant paints (with the exception of those on boats), the enamels 134 

on drinking glasses and ceramicware products. Detection frequency was lowest on painted toys 135 

and household equipment and the enamels of consumer bottles. Antimony was detected in all 136 

colours, and including the colourless or lightly coloured glass of some products, but most 137 

commonly occurred in articles coloured yellow, red (including pink) or shades of white. 138 

Significantly, Pb was present at concentrations above 100 g g-1 in nearly 90% of samples 139 

where Sb was detected and across all sample categories and among all colours. 140 

The highest concentrations of Sb (above 50,000g g-1) were encountered with concentrations 141 

of Pb above 100,000 g g-1 in two bright yellow ceramic items (a tea cup and plate, with the 142 

XRF spectra of the former illustrated in Figure 1a). These are the only clear cases in which the 143 

pigment, lead antimonite or Naples yellow (whose theoretical molecular formula is Pb2Sb2O7), 144 

appears to have been used, and where excess Pb can be attributed to its additional use in the 145 

glazing of these products. The pigment may have been used in some older interior and exterior 146 

paints (where Sb concentrations exceeded 20,000 g g-1) but here concentrations of Pb were 147 

lower than the required stoichiometry of the compound and results and any relationships with 148 
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colour may have been confounded by the effects of multiple layers of different paint 149 

formulations measured in situ. 150 

Regarding paints available to the contemporary consumer, Sb was present at concentrations of 151 

a few thousandg g-1 in two artists paints containing the bright red pigment, cadmium 152 

sulphoselenide (CI Pigment Red 108), and exemplified by the XRF spectrum in Figure 1b, and 153 

a speciality leaded paint coloured by lead chromate molybdate sulphate red (CI Pigment Red 154 

104), but was not detected in any paints for internal or external decoration. This suggests that 155 

Sb detected in extant paints of private properties arises from its presence in older applications, 156 

and a co-association with Pb may simply reflect the historical use of leaded paints in the same 157 

era. Antimony trioxide (CI Pigment White 11) was added to anatase titanium dioxide (CI 158 

Pigment White 6) to reduce chalking of the primary pigment before inherently antichalking 159 

formulations were available (Abel, 2000) and this may explain the presence of Sb in white 160 

extant paints in association with high concentrations of Ti (see XRF spectrum in Figure 1c). 161 

Antimony trioxide is, however, unlikely to be present (additionally) as a flame suppression 162 

synergist because concentrations of Cl and Br (indicators of halogenated flame retardants) were 163 

always too low to provide any form of fire retardancy (typically a few percent w/w; National 164 

Materials Advisory Board, 1970). 165 

In extant municipal paints and boat paints, Sb was usually present at concentrations ranging 166 

from 1000 to 10,000 g g-1 in formulations that were brightly coloured, and in particular in reds 167 

and yellows. In most cases, the XRF spectrum suggested that the primary pigment for colour 168 

was lead chromate (CI Pigment Yellow 34), lead chromate molybdate sulphate or bismuth 169 

vanadate (CI Pigment Yellow 184) (Figure 1d). Clearly, Sb is not used in these cases for colour 170 

itself but appears to be used as a fastener where colour protection from UV radiation is required 171 

(USAC, 2017).  172 
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Among the glass containers and drinking vessels, including newly-purchased articles, Sb was 173 

present in the glass itself in three products, presumably as a fining component or decolourising 174 

agent (Grund et al., 2010), and appeared to be used as a colour fastener on the brightly coloured 175 

enamels of ten products, with maximum Sb concentrations in the glass and enamel of about 176 

4000 g g-1 and 8000 g g-1, respectively. Multiple measurements of ceramicware in circulation 177 

suggested that Sb was present in the glaze and uncoloured enamels of 12 products and at 178 

concentrations ranging from about 1000 to 3000 g g-1, possibly as an opacifier in articles fired 179 

at low temperatures (Demont et al., 2012), and in the coloured enamels of 15 products. As 180 

above, Sb was present as a pigment (lead antimonite) in two cases but appeared to be more 181 

commonly encountered in significantly lower concentrations (1000  to 4500 g g-1), presumably 182 

as a colour fastener for other pigments.  183 

3.2. Migration and potential environmental and health impacts of Sb 184 

Given concerns about the toxicity of Sb (IARC, 1989; NTP, 2018), the lack of regulations that 185 

directly apply (or that have been applied) to the sample types considered herein and the data 186 

presented in Table 1 is surprising. The most relevant regulation concerns material like paint, 187 

that can be scraped off children’s toys, where a maximum migratable limit (mobilised by 0.07 188 

M HCl) is 560 g g-1 according to the amended EU Toy Safety Directive (European Parliament 189 

and the Council of the European Union, 2009). However, the results reported in Table 1 suggest 190 

that the type of paint used on children’s toys and other household wooden and metallic artefacts 191 

rarely contains detectable Sb. Whether this reflects attempts to avoid Sb in such products or 192 

simply results from no requirement for the metalloid in these applications is unclear. Perhaps 193 

of greater concern to human health in this perspective is the use of Sb as a fastener in brightly 194 

coloured paints used on public playground equipment. The highest concentration of Sb returned 195 

for such equipment was about 6000 g g-1, with an earlier study revealing that up to 0.56 % of 196 

Sb in these formulations was accessible to dilute HCl (Turner et al., 2016). This suggests about 197 
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30 g g-1 of Sb in playground paint could be accessible to children through inadvertent 198 

ingestion. While this concentration is well below the limit stipulated by the Toy Safety 199 

Directive, it should be noted that, in the majority of cases considered here, Sb was co-associated 200 

with high concentrations of lead and that any synergistic effects of these elements on human 201 

health are unknown. 202 

Much recent attention has focussed on the migration of Sb from single-use PET food-contact 203 

items like water bottles and ready meal trays. Regardless of storage conditions, measured 204 

concentrations of Sb in bottled water have not exceeded the European Commission limit for 205 

natural mineral water of 5 g L-1 or the US Environmental Protection Agency maximum 206 

contaminant level of 6 g L-1 (Shotyk et al., 2006; Greifenstein et al., 2013; Payan et al., 2017; 207 

Roje and Sutalo, 2019). While concentrations of Sb reported in food contained and cooked in 208 

PET packaging sometimes exceed the 40 g kg-1 limit specified by European Union Regulation 209 

10/2011, typical food consumption results in intakes of Sb that are significantly below the 210 

World Health Organization (WHO) tolerable daily intake (TDI) of 6 g kg-1  (Haldimann et al., 211 

2007; Whitt et al., 2016). Antimony concentrations in contemporary PET as residual catalyst 212 

(typically 200 to 300 g g-1; Westerhoff et al., 2008) are, however, an order of magnitude lower 213 

than concentrations in many articles of ceramicware and glassware reported in the present study. 214 

Moreover, the latter are subject to sustained or long-term use and to foodstuffs that may be 215 

relatively acidic.  216 

Despite the occurrence of Sb in historical and contemporary food-contact ware, the degree of 217 

its migration from such articles is poorly documented. Burns (1935) studied the migration of 218 

Sb compounds from the enamel (and glaze) of a ceramic jug that contained 9800 g g-1 Sb 219 

using various preparations of 0.5% citric acid solution. Antimony concentrations of up to 5.6 220 

mg L-1 were detected colorimetrically in successive 18-hour extracts of the original article in 221 

which the acid was introduced while boiling, but extraction rose to 20 mg L-1 when the jug had 222 
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been scoured. Although the author was unable to definitively state that such concentrations were 223 

toxic, the prohibition of Sb in enamelware was called for. More recently, Demont et al. (2012) 224 

studied the mobilisation of Sb and other elements from customised ceramicware that had been 225 

treated with various pigments (including Sb2O3 as and opacifier, but of unspecified 226 

concentration) and glazed. Extraction after 24 h was greatest, and up to about 0.2 mg L-1, for 227 

4% acetic acid but tests were not performed after disturbing the glaze to simulate sustained 228 

usage and washing. Given the high levels of Sb in some of the ceramicware and enamels studied 229 

herein and regulations limiting both the concentrations and migration of lead and cadmium 230 

from ceramicware and the lip area (within 2 cm of the rim) of decorated drinking glasses 231 

(Council of the European Communities, 1984; Rebeniak et al., 2014) it would seem prudent to 232 

investigate the rates and mechanisms of Sb migration from food-contact articles more 233 

systematically. The potential risks arising from migration should also be evaluated with respect 234 

to the WHO 6 g kg-1 TDI for the metalloid. 235 

Unlike Sb-containing electronic plastics and PET food packaging, and, with the exception of 236 

container glassware, the products and applications described herein are not generally recycled. 237 

Thus, the use of Sb in ceramics, enamels and paints requires its disposal through landfill or 238 

incineration, both of which are challenging because of regulatory or environmental constraints 239 

on the metalloid in the waste stream. For example, in Europe the limit value for Sb leaching 240 

from granular solid waste (by deionised water and according to standard batch test EN 12457) 241 

is among the lowest for all elements reported, and above 5 g Sb g-1 waste is classified as 242 

hazardous (Environment Agency, 2013). With regard to incineration, and despite the volatility 243 

of many antimony compounds, about 50% of the metalloid remains in bottom ashes due to 244 

interactions with other chemicals in the fuel bed and the consequent formation of thermally 245 

stable antimonates (Paoletti et al., 2001). Because of the leaching of Sb from incinerator bottom 246 
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ashes, the EU considers the element to be the most problematic in terms of the reuse and 247 

recovery potential of waste material (European Communities, 2008). 248 

 249 

4. Conclusions 250 

Antimony has a variety of applications in paints, glass and ceramicware that are available to 251 

the consumer and accessible to the public. It is commonly encountered in old domestic paints 252 

as an anti-chalking agent but appears to be limited to contemporary consumer paints of a 253 

speciality nature where the metalloid is used as a fastener for brightly coloured, and often toxic, 254 

primary pigments. It is more likely to be found in contemporary paints applied to exterior 255 

municipal structures, like roads, boats, playground equipment and telephone kiosks, where it 256 

serves as a fastener to reduce the deterioration of bright colours. Antimony is present in glass 257 

and glazed ceramics and appears to be added as a fastener for pigments in enamels but clear 258 

evidence of its occurrence as the primary pigment, lead antimonite, was restricted to two bright 259 

yellow articles of ceramicware. Little information exists on the migration or accessibility of Sb 260 

in paints, glass and ceramicware but given concerns about its heath risks and that regulations 261 

exist for other metals in such products, more systematic research into Sb mobility is called for. 262 
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Table 1: Occurrence, distribution and concentrations of Sb in paints, ceramicware and container glass. Categories are shown with the number of samples 

analysed, n (column 2) is the number of cases in which Sb was detected, mean, median, minimum and maximum concentrations are in g g-1, colourmax is the 

colour of the article returning the highest Sb concentration, colourcom is the colour where Sb was most commonly detected, and Sb-Pb denotes the number of 

cases in which Sb co-existed with Pb above a concentration of 100 g g-1.  

 

 

 

  

n mean median min max colourmax colourcom Sb-Pb

Interior extant paint (n  = 25) 10 8670 7630 2610 24500 yellow white (n  = 6) 10

Exterior extant paint (n  = 25) 9 2530 1020 260 8540 brown white (n  = 3) 9

Municipal extant paint (n  = 93) 38 2220 1190 147 27500 grey yellow (n  = 18) 32

Extant boat paint (n  = 21) 6 3000 993 176 8080 red red (n  = 3) 4

Consumer paints (n  = 18) 3 2070 2670 520 3020 red red (n = 3) 3

Painted toys/equipment (n  = 33) 2 318 318 215 420 red red (n  = 2) 1

Consumer bottle enamel (n  = 20) 3 1290 1610 629 1640 green various (n  = 1) 2

Drinking glass enamel (n  = 31) 10 2310 1510 507 7790 yellow green (n  = 2) 8

Ceramicware enamel (n  = 69) 23 6430 933 308 62800 yellow yellow (n  = 6) 22

Total (n  = 335) 104 3360 1180 147 62800 yellow yellow (n  = 29) 91
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Figure 1: XRF spectra of four samples and shown as counts per second versus energy from 0 to 35 

keV. (a) A second hand teacup pigmented with lead antimonate and glazed with lead oxide and tin 

oxide; (b) an artists’ paint pigmented with cadmium sulphoselenide and where Sb is present, 

presumably, as a fastener; (c) the exterior paint of a private household where Sb is likely present as an 

anti-chalking agent with titanium dioxide and lead; (d) a galvanised steel playground gate coloured by 

bismuth vanadate and where Sb is present as a colour fastener. 

 

 


