4 research outputs found
Environmental Aspects of Historical Ferromanganese Tailings in the Šibenik Bay, Croatia
The former manganese ferroalloy plant and the remaining tailings are affecting the quality of the environment in Šibenik Bay, Croatia, even though industrial activities ceased more than 25 years ago. This study has revealed that the main manganese mineral phases present in the recently collected tailings, as well as in the dust collected on the roof of the plant during the production period, are bustamite and Mn-oxides. The same type of Mn mineral phases was also found in recently collected sediments from Šibenik Bay. Detailed chemical and phase analyses (XRD, BCR sequential analysis, aqua regia and lithium borate fusion) of the dust sample revealed high manganese values (24.1%), while granulometric analysis showed that 50% of the particles are smaller than PM2.5. The influence of the tailings is visible in the sediment, but the concentrations of the potentially toxic elements determined by the sequential BCR analysis are within the legal limits. Some higher values (20.3 g/kg Mn, 595 mg/kg Pb and 494 mg/kg Zn) are detected in the tailings, which are still exposed to weathering and as such should be additionally monitored. On the other hand, this material contains a considerable number of elements that could be considered lucrative (∑ REE up to 700 mg/kg, Mn up to 23 g/kg, Fe up to 37 g/kg and Al up to 25 g/kg), opening the possibility of reuse and recovery
Socio-demographic, lifestyle, and dietary determinants of essential and possibly-essential trace element levels in adipose tissue from an adult cohort
There is increasing evidence linking levels of trace elements (TEs) in adipose tissue with certain chronic conditions (e.g., diabetes or obesity). The objectives of this study were to assess concentrations of a selection of nine essential and possibly-essential TEs in adipose tissue samples from an adult cohort and to explore their socio-demographic, dietary, and lifestyle determinants. Adipose tissue samples were intraoperatively collected from 226 volunteers recruited in two public hospitals from Granada province. Trace elements (Co, Cr, Cu, Fe, Mn, Mo, Se, V, and Zn) were analyzed in adipose tissue by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Data were collected on socio-demographic characteristics, lifestyle, diet, and health status by face-to-face interview. Predictors of TE concentrations were assessed by using multivariable linear and logistic regression. All TEs were detected in all samples with the exception of Se (53.50%). Iron, zinc, and copper showed the highest concentrations (42.60 mg/kg, 9.80 mg/kg, and 0.68 mg/kg, respectively). Diet was the main predictor of Cr, Fe, Mo, and Se concentrations. Body mass index was negatively associated with all TEs (β coefficients = −0.018 to −0.593, p = 0.001–0.090) except for Mn and V. Age showed a borderline-significant positive correlation with Cu (β = 0.004, p = 0.089). Residence in a rural or semi-rural area was associated with increased Co, Cr, Fe, Mo, Mn, V and Zn concentrations and with β coefficients ranging from 0.196 to 0.544 (p < 0.05). Furthermore, individuals with higher educational level showed increased Cr, Co, Fe and V concentrations (β coefficients = 0.276–0.368, p = 0.022–0.071). This is the first report on the distribution of these TEs in adipose tissue and on their determinants in a human cohort and might serve as an initial step in the elucidation of their clinical relevance
Biogeochemical impact of historical submarine mine tailings on benthic ecosystems in the Repparfjord (Northern Norway)
Historical copper mine tailings deposited in the Repparfjord, Northern Norway, provided new insight into the biogeochemical impact of submarine tailings disposals on high-latitude coastal ecosystems. The submarine tailings disposal in the Repparfjord represents a product of mining activities between 1972 and 1979. Their environmental impact has been extensively studied during the last decade, but geochemistry of the sediment pore water, which is crucial to assess and monitor the in-situ metal leaching and bioavailability, has never been analysed. The actual impact on the benthic fauna remains poorly known. Therefore, this study couples the pore water chemistry and the foraminiferal analysis obtained from selected sediment cores (gravity core, multicore, box cores) to examine metal stability and the past and current status of the foraminifera community. We measured down-core sulfate and trace metal concentrations and Eh-Ph and applied the Shannon index, the AZTI's Marine Biotic Index (F-AMBI) index and the foraminiferal abnormality index. This study confirms the ongoing leaching of copper from the underlying mine tailings and release across the sediment-water interface. Leaching of Ni, Zn and Pb have been attributed to weathering of natural bedrock lithologies. The original benthic foraminiferal community disappeared almost entirely during the disposal period, and now it is dominated by stress-tolerant and opportunistic species like Bulimina marginata and Spiroplectammina biformis. Anyhow, against previous assumptions, the community composition changed, while the overall diversity and abnormalities (FAI) shell formation is unaffected by elevated copper concentrations