2,539 research outputs found

    Demand-Aware Network Design with Steiner Nodes and a Connection to Virtual Network Embedding

    Full text link
    Emerging optical and virtualization technologies enable the design of more flexible and demand-aware networked systems, in which resources can be optimized toward the actual workload they serve. For example, in a demand-aware datacenter network, frequently communicating nodes (e.g., two virtual machines or a pair of racks in a datacenter) can be placed topologically closer, reducing communication costs and hence improving the overall network performance. This paper revisits the bounded-degree network design problem underlying such demand-aware networks. Namely, given a distribution over communicating server pairs, we want to design a network with bounded maximum degree that minimizes expected communication distance. In addition to this known problem, we introduce and study a variant where we allow Steiner nodes (i.e., additional routers) to be added to augment the network. We improve the understanding of this problem domain in several ways. First, we shed light on the complexity and hardness of the aforementioned problems, and study a connection between them and the virtual networking embedding problem. We then provide a constant-factor approximation algorithm for the Steiner node version of the problem, and use it to improve over prior state-of-the-art algorithms for the original version of the problem with sparse communication distributions. Finally, we investigate various heuristic approaches to bounded-degree network design problem, in particular providing a reliable heuristic algorithm with good experimental performance. We report on an extensive empirical evaluation, using several real-world traffic traces from datacenters, and find that our approach results in improved demand-aware network designs

    Occurrence and Positive Predictive Value of Additional Nonmass Findings for Risk Stratification of Breast Microcalcifications in Mammography

    Get PDF
    AbstractPurposeTo assess the occurrence and positive predictive value of additional nonmass findings to stratify the risk of breast microcalcifications.MethodsThis retrospective evaluation included 278 lesions with vacuum- or image-guided hook-wire biopsy for suspicious microcalcifications. The lesions were categorized into exclusive microcalcifications and microcalcifications with focal asymmetry, tubular density or architectural distortion (ie, nonmass findings). To evaluate the utility of additional nonmass findings for risk stratification, outcome variables were positive predictive values and odds ratios for malignancy and invasive carcinoma.ResultsForty-five of 278 microcalcification lesions (16%) were associated with nonmass findings: 28 focal asymmetries, 2 tubular densities, and 15 focal asymmetries in conjunction with tubular densities. Architectural distortion was observed in 28 of these cases. The odds ratio for additional nonmass findings relative to exclusive microcalcifications was 5.9 and was statistically significant (P < .00001). Architectural distortion was the most specific indicator for malignancy and invasiveness, with odds ratios of 6.5 (P = .0072) and 5.6 (P = .0214), respectively.ConclusionsMicrocalcifications with nonmass findings were less frequent than exclusive microcalcifications but were more predictive for malignancy. Architectural distortion demonstrated the highest risk of malignancy and invasiveness. Assessment of additional nonmass findings might be useful for further risk stratification of microcalcifications, indications for additional imaging, and pretreatment considerations

    Stability of chemical reaction fronts in solids:Analytical and numerical approaches

    Get PDF
    Localized chemical reactions in deformable solids are considered. A chemical transformation is accompanied by the transformation strain and emerging mechanical stresses, which affect the kinetics of the chemical reaction front to the reaction arrest. A chemo-mechanical coupling via the chemical affinity tensor is used, in which the stresses affect the reaction rate. The emphasis is made on the stability of the propagating reaction front in the vicinity of the blocked state. There are two major novel contributions. First, it is shown that for a planar reaction front, the diffusion of the gaseous-type reactant does not influence the stability of the reaction front – the stability is governed only by the mechanical properties of solid reactants and stresses induced by the transformation strain and the external loading, which corresponds to the mathematically analogous phase transition problem. Second, the comparison of two computational approaches to model the reaction front propagation is performed – the standard finite-element method with a remeshing technique to resolve the moving interface is compared to the cut-finite-element-based approach, which allows the interface to cut through the elements and to move independently of the finite-element mesh. For stability problems considered in the present paper, the previously-developed implementation of the cut-element approach has been extended with the additional post-processing procedure that obtains more accurate stresses and strains, relying on the fact that the structured grid is used in the implementation. The approaches are compared using a range of chemo-mechanical problems with stable and unstable reaction fronts.</p

    Amenability of algebras of approximable operators

    Get PDF
    We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelson's space.Comment: 20 pages, to appear in Israel Journal of Mathematic

    Magnetic fluctuations in frustrated Laves hydrides R(Mn_{1-x}Al_{x})_{2}H_{y}

    Full text link
    By neutron scattering, we have studied the spin correlations and spin fluctuations in frustrated Laves hydrides, where magnetic disorder sets in the topologically frustrated Mn lattice. Below the transition towards short range magnetic order, static spin clusters coexist with fluctuating and alsmost uncorrelated spins. The magnetic response shows a complexe lineshape, connected with the presence of the magnetic inhomogeneities. Its analysis shows the existence of two different processes, relaxation and local excitations, for the spin fluctuations below the transition. The paramagnetic fluctuations are discussed in comparison with classical spin glasses, cluster glasses, and non Fermi liquid itinerant magnets

    Stability of chemical reaction fronts in solids : analytical and numerical approaches

    Get PDF
    Localized chemical reactions in deformable solids are considered. A chemical transformation is accompanied by the transformation strain and emerging mechanical stresses, which affect the kinetics of the chemical reaction front to the reaction arrest. A chemo-mechanical coupling via the chemical affinity tensor is used, in which the stresses affect the reaction rate. The emphasis is made on the stability of the propagating reaction front in the vicinity of the blocked state. There are two major novel contributions. First, it is shown that for a planar reaction front, the diffusion of the gaseous-type reactant does not influence the stability of the reaction front – the stability is governed only by the mechanical properties of solid reactants and stresses induced by the transformation strain and the external loading, which corresponds to the mathematically analogous phase transition problem. Second, the comparison of two computational approaches to model the reaction front propagation is performed – the standard finite-element method with a remeshing technique to resolve the moving interface is compared to the cut-finite-element-based approach, which allows the interface to cut through the elements and to move independently of the finite-element mesh. For stability problems considered in the present paper, the previously-developed implementation of the cut-element approach has been extended with the additional post-processing procedure that obtains more accurate stresses and strains, relying on the fact that the structured grid is used in the implementation. The approaches are compared using a range of chemo-mechanical problems with stable and unstable reaction fronts

    Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    Full text link
    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.

    Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats

    Get PDF
    Painful stimuli during neonatal stage may affect brain development and contribute to abnormal behaviors in adulthood. Very few specific therapies are available for this developmental disorder. A better understanding of the mechanisms and consequences of painful stimuli during the neonatal period is essential for the development of effective therapies. In this study, we examined brain reactions in a neonatal rat model of peripheral inflammatory pain. We focused on the inflammatory insult-induced brain responses and delayed changes in behavior and pain sensation. Postnatal day 3 pups received formalin injections into the paws once a day for 3 days. The insult induced dysregulation of several inflammatory factors in the brain and caused selective neuronal cell death in the cortex, hippocampus and hypothalamus. On postnatal day 21, rats that received the inflammatory nociceptive insult exhibited increased local cerebral blood flow in the somatosensory cortex, hyperalgesia, and decreased exploratory behaviors. Based on these observations, we tested recombinant human erythropoietin (rhEPO) as a potential treatment to prevent the inflammatory pain-induced changes. rhEPO treatment (5,000 U/kg/day, i.p.), coupled to formalin injections, ameliorated neuronal cell death and normalized the inflammatory response. Rats that received formalin plus rhEPO exhibited normal levels of cerebral blood flow, pain sensitivity and exploratory behavior. Treatment with rhEPO also restored normal brain and body weights that were reduced in the formalin group. These data suggest that severe inflammatory pain has adverse effects on brain development and rhEPO may be a possible therapy for the prevention and treatment of this developmental disorder

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure
    • 

    corecore