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A B S T R A C T

Localized chemical reactions in deformable solids are considered. A chemical transformation is accompanied by
the transformation strain and emerging mechanical stresses, which affect the kinetics of the chemical reaction
front to the reaction arrest. A chemo-mechanical coupling via the chemical affinity tensor is used, in which
the stresses affect the reaction rate. The emphasis is made on the stability of the propagating reaction front
in the vicinity of the blocked state. There are two major novel contributions. First, it is shown that for a
planar reaction front, the diffusion of the gaseous-type reactant does not influence the stability of the reaction
front – the stability is governed only by the mechanical properties of solid reactants and stresses induced
by the transformation strain and the external loading, which corresponds to the mathematically analogous
phase transition problem. Second, the comparison of two computational approaches to model the reaction
front propagation is performed – the standard finite-element method with a remeshing technique to resolve
the moving interface is compared to the cut-finite-element-based approach, which allows the interface to cut
through the elements and to move independently of the finite-element mesh. For stability problems considered
in the present paper, the previously-developed implementation of the cut-element approach has been extended
with the additional post-processing procedure that obtains more accurate stresses and strains, relying on the
fact that the structured grid is used in the implementation. The approaches are compared using a range of
chemo-mechanical problems with stable and unstable reaction fronts.
1. Introduction

Problems with propagating interfaces are encountered in various
solid mechanics problems, such as stress-induced phase transitions
and chemo-mechanics. Propagating interfaces in phase transition prob-
lems (e.g., martensitic transformation) have been studied analytically
and numerically during last decades within the framework of me-
chanics of configurational forces (Abeyaratne and Knowles, 1991; Liu,
1992; Socrate and Parks, 1993; Müller and Gross, 1999; Gurtin, 2000;
Gross et al., 2002; Abeyaratne and Knowles, 2006; Berezovski et al.,
2008; Maugin, 2010). Propagation of chemical reaction fronts in solids
presents a particular interest to researchers due to interdisciplinarity
and relevance to modern industry. Such problems include formation
of oxide layers on polycrystalline Si parts of micro-electro-mechanical
systems (MEMS) and the subsequent fracture, impacting the lifetime of
MEMS (Muhlstein et al., 2002a,b; Muhlstein and Ritchie, 2003); growth
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of the intermetallic compound phases in solder-based joints (Kim and
Tu, 1996; Schaefer et al., 1998; Böhme et al., 2009; Anders et al., 2012;
Schuß et al., 2018; Arafat et al., 2020; Wang et al., 2020; Morozov
et al., 2020); lithiation of Si in Li-ion batteries (McDowell et al.,
2013; Cui et al., 2013; Poluektov et al., 2018; Wu et al., 2018; Abali,
2020; Wang et al., 2021; Viana et al., 2023); and paint degradation
under metal soap formation in historical paintings (Eumelen et al.,
2019, 2023). Experimental evidence shows that in such problems,
mechanical stresses affect the reaction front kinetics — the stresses can
accelerate, retard, or even block the propagation of chemical reaction
fronts (Marcus and Sheng, 1982; Kao et al., 1988; Mihalyi et al., 1999;
Heidemeyer et al., 2000; Büttner and Zacharias, 2006; Liu et al., 2013;
van Havenbergh et al., 2016). Moreover, the stresses also influence
the stability of the propagating fronts (Suo et al., 1992; Barvosa-Carter
et al., 1998; Ortiz et al., 1999; Phan et al., 2001; Barvosa-Carter et al.,
vailable online 16 December 2023
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2004; Ahmad and Viswanathan, 2017), which is relevant to the solid
electrolyte interphase (SEI) formation in Li-ion batteries (Natsiavas
et al., 2016; Hüter et al., 2017), where the formation and growth
of a dendrite, which can be considered as an instability, can induce
delamination or cause an inner short circuit (Monroe and Newman,
2005; Doux et al., 2020; Qin et al., 2020; Gao and Lu, 2022).

In the case of quasi-static stress-induced phase transitions, the con-
figurational force driving the interface propagation is given by the
jump of the normal component of the Eshelby stress tensor (Šilhavy,
1997; Gurtin, 2000; Abeyaratne and Knowles, 2006; Maugin, 2010).
Zero configurational force is a necessary criterion for the phase equi-
librium. However, the interface may be stable or unstable (Grinfeld,
1991). In the case of localized chemical reactions, zero configurational
force corresponds to the chemical equilibrium, at which the reaction
front propagation is blocked. The chemical reaction front may also be
stable or unstable (Morozov et al., 2019a, 2023), and the front may
be directed to unstable configurations by the supply of the diffusive
reactant. Therefore, the question regarding the stability of the reaction
fronts arises naturally. Not only interfaces at equilibrium can be stable
or unstable, but also propagating ones — a perturbation of the prop-
agating interface can decay or grow, which corresponds to the stable
and the unstable scenarios, respectively.

In Eremeev et al. (2003) and Yeremeyev et al. (2007), it has been
shown that in the case of isotropic phases, in a sphere undergoing phase
transition, a new phase nucleation may start either in the center or at
the outer surface of the sphere, depending on the energy expression.
One of these cases is unstable even if it satisfies the phase equilibrium
conditions. In a similar case of a sphere undergoing a localized chemical
reaction, the supply of the diffusive constituent at the outer surface
determines where the nucleation of the new phase starts. Therefore,
the new phase might grow at the outer surface of a sphere, despite this
configuration being potentially unstable.

From a mathematical point of view, a general problem of coupled
chemo-mechanics with localized chemical reactions represents a system
of PDEs defined on a domain with time-dependent interfaces. There
is a large variety of numerical approaches that can handle problems
with propagating interfaces. All of them can be divided into two
groups considering either a smooth or a sharp representation of the
interface. A typical example of the smooth-interface approach is the
phase-field method, e.g., Svendsen et al. (2018), Weinberg et al. (2018)
in application to chemo-mechanics and Schneider et al. (2017, 2018)
in application to phase transitions. The sharp-interface methods can
be divided into a number of subcategories by the type of discretiza-
tion of the equations. One example of such method is the boundary
integral method, e.g., Su and Voorhees (1996a,b), Jou et al. (1997) in
application to chemo-mechanics. A more widespread approach is the
finite-element method, application of which to chemo-mechanics is the
main focus of the present paper.

All sharp-interface finite-element-based methods can be divided
into three subcategories. The first subcategory covers the case of the
interface coinciding with the element edges/faces in 2D/3D and the ge-
ometry being completely remeshed each time the interface propagates,
e.g., Freidin et al. (2016, 2022) in application to chemo-mechanics. The
second subcategory also relies on the interface coinciding with the ele-
ment edges/faces; however, the mesh in only distorted as the interface
moves, i.e., the nodes are moved, without changing the number or the
connectivity of the nodes, e.g., Morozov et al. (2018) in application to
chemo-mechanics, where such approach has been implemented using
the isogeometric method.

The third subcategory contains approaches where the interface cuts
through the finite-element mesh in an arbitrary way and moves inde-
pendently of the mesh, which is unchanged from one time increment
to another. A typical example of such approach is the combination
of the extended finite-element method (XFEM) to solve the PDEs and
the level-set method to move the interface, e.g., Zhao et al. (2013a,b)
2

in application to the phase transitions and Duddu et al. (2011), Zhao
et al. (2015) in application to chemo-mechanics. Another example
of such approach is the CutFEM method, which has been originally
formulated for linear problems (Hansbo and Hansbo, 2002; Burman
and Hansbo, 2012) and subsequently has been adapted specifically to
linear elasticity (Hansbo et al., 2017; Burman et al., 2018, 2019a,b).
Recently, the CutFEM method has been adapted to problems of chemo-
mechanics (Poluektov and Figiel, 2019), where the numerical method
has been formulated for the general finite-strain chemo-mechanical
setting, i.e., involving non-linear PDEs. The CutFEM method relies
on two main features — the enforcement of the interface conditions
weakly using the Nitsche method (Nitsche, 1971), which allows solving
the discretized PDEs with the interface cutting through the elements,
and the introduction of an inter-element stabilization, which addresses
the ill-conditionality of the discrete problem related to the interface
partitioning the elements into highly unequal spatial fractions.

The present paper continues the study of the stability of chemical
reaction fronts, started in Morozov (2021) and Morozov et al. (2023),
where the kinetics of the interface is governed by the chemical affin-
ity tensor, developed in Freidin (2013) and Freidin et al. (2014). A
perturbed kinetic equation in the vicinity of the equilibrium position
of the chemical reaction front is considered, similarly to the case of
phase transitions (Yeremeyev et al., 2007). It should be noted that the
kinetic stability analysis performs not only an energy-based verification
of the stability and states the fact of the stability loss, but also gives
hints on modes of instability formation and the tendencies of further
kinetics of the perturbations. Analytical investigation of the interface
stability based on the perturbed kinetic equation is relatively complex,
even for simple geometries. Non-trivial geometries require a numerical
procedure to capture the aforementioned stability behavior. Therefore,
the aim of the present paper is twofold: (a) to perform the linear
stability analysis for a planar chemical reaction front, (b) to compare
two computational approaches for modeling chemical reaction front
propagation — the standard finite-element method with a remeshing
technique and the CutFEM-based approach.

2. Coupled chemo-mechanics with localized chemical reaction

A chemical reaction between the solid and the diffusive constituents
is considered. The reaction is localized at the chemical reaction front
— a sharp interface separating the chemically transformed and the
untransformed phases. The diffusive constituent is supplied from the
external environment and diffuses to the reaction front through the
transformed phase, as illustrated in Fig. 1. A typical chemical reaction
of this type is

𝑛−𝐵− + 𝑛∗𝐵∗ ⟶ 𝑛+𝐵+, (1)

here 𝐵−, 𝐵∗, 𝐵+ stand for the untransformed phase, the diffusive
onstituent, the chemically transformed phase, respectively; 𝑛−, 𝑛∗, 𝑛+
re the corresponding stoichiometric coefficients. Since the reaction is
ocalized, its evolution in time consists in propagation of the chemical
eaction front. From the mass balance, it follows that the normal
omponent of the reaction front velocity, denoted as 𝑉 ch

𝛤∗
, is related to

hemical reaction rate 𝜔 at the oriented surface element of the reaction
ront (defined as the amount of substance produced by the reaction per
nit area and per unit of time) as

ch
𝛤∗

=
𝑛−𝑀−
𝜌−

𝜔, (2)

where 𝑀− and 𝜌− are the molar mass and the density of the untrans-
formed material, respectively (Freidin, 2013; Freidin and Vilchevskaya,
2020).

The scope of the present paper is limited to consideration of a
single reaction front and linear elastic behavior of the materials, as
the latter allows studying analytically the front stability. It is also
possible to consider more complex constitutive behavior (e.g., including

viscosity), but the analytical solutions become much more cumbersome
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Fig. 1. A schematic representation of a localized chemical reaction in a deformable
solid.

or even impossible. Moreover, chemical processes can involve multiple
diffusive species, and the reactions can occur at multiple chemical
reaction fronts, at each of which, the solid component reacts with a
single diffusive constituent. An example of the latter is the formation
of intermetallic compounds in lead-free solder alloys, which has been
modeled in Morozov et al. (2019b) using the same framework as used
in the present paper, however, without addressing the question of
stability.

In the linear-elastic case, the general chemo-mechanical problem
with the localized reaction can be formulated as follows. Non-stationary
chemical reaction front 𝛤∗ splits the domain of the solid body into 𝛺+
and 𝛺−, which are the domains occupied by the transformed and the
untransformed phases, respectively. Material deformation is governed
by the linear momentum balance equation,

∇ ⋅ 𝝈± = 0⃗ in 𝛺±, (3)

where 𝝈± and 𝜺± denote the stress and the infinitesimal linear strain
ensors, respectively, in the transformed and the untransformed phases,
elated by the following constitutive laws:

+ = 4𝑪+ ∶
(

𝜺+ − 𝜺ch
)

in 𝛺+,

𝝈− = 4𝑪− ∶ 𝜺− in 𝛺−,

where 4𝑪± are the stiffness tensors of the materials. Subscripts ‘‘+’’
and ‘‘−’’ denote the variables corresponding to materials 𝐵+ and 𝐵−,
respectively. Subscripts ‘‘±’’ and ‘‘∓’’ are used to indicate that the
considered equation consists of two equations, where the first is written
with the upper signs and the second is written with the lower signs.
When function’s arguments contain a variable with subscript ‘‘±’’, it
denotes that the function depends both on the variable with subscript
‘‘+’’ and the variable with subscript ‘‘−’’. A chemical transformation
(e.g., volumetric expansion) is represented in the model as transforma-
tion strain 𝜺ch. The displacement and the traction continuity conditions
at the chemical reaction front are enforced:
[[

𝑢
]]

= 0⃗ and [[𝝈]] ⋅ �⃗�∗ = 0⃗ on 𝛤∗, (4)

here �⃗�∗ is the normal to the reaction front, defined as the outer
ormal to the domain occupied by the transformed material. Brackets
[⋅]] denote the jump of a quantity across the interface. The displacement
nd/or the traction boundary conditions are prescribed at the outer
urface of the body.

The following assumptions regarding the diffusion are made: (A) the
iffusion process is much faster than the chemical reaction rate, and
he transient diffusion regime can be neglected; (B) the diffusion takes
lace only inside the transformed material, and the diffusive reactant
pproaching reaction front 𝛤∗ is entirely consumed at the reaction
ront; (C) the classical Fickian diffusion is considered, in which the
echanical stresses do not affect the diffusion kinetics in the bulk.

Assumption (A) implies that in the considered problems, the front
ropagation is controlled by the chemical reaction rate, i.e., the pro-
esses at the front, rather than by the diffusive transport taking place
3

ver a long range, which has been observed experimentally during the
nitial stages of Si lithiation (Liu et al., 2011). This assumption also
eads to the stationary diffusion formulation, which has been previously
sed for modeling of the front kinetics based on the chemical affinity
ensor in, e.g., Freidin et al. (2014), Poluektov et al. (2018). It is
lso worth mentioning that in Zhao et al. (2012), Jia and Li (2015),
ocalized Si lithiation has been modeled and the diffusion has been
ssumed to be fast enough to allow for a uniform distribution of
ithium, which is a stronger assumption than the stationarity of the
iffusion.

Assumption (B) is also motivated experimentally — for example, for
he localized reaction between Li and Si, there is a direct experimental
vidence that the diffusive species are confined to the transformed
lithiated) material (Liu et al., 2012). In the latter work, it has been
hown experimentally that during lithiation of crystalline Si, the thick-
ess of the reaction zone is around 2 nm. If micrometer-size samples
re considered, then such reaction front can be modeled as being in-
initely thin. Similar infinitely-thin reaction zones are observed during
ormation of intermetallic compounds (Morozov et al., 2020). These
bservations also motivate the sharp interface model of the reaction
ront.

Finally, since the front velocity is controlled by the chemical reac-
ion rate, the influence of the mechanical stresses on the supply of the
iffusive reactant can be considered to have a minor effect on the front
elocity, compared to the effect of the stresses on the consumption rate
t the front (i.e., the reaction rate), justifying assumption (C). It should
e noted that there is a wide range of models, in which the stresses
o affect the diffusion, e.g., Cui et al. (2012), Brassart and Suo (2012,
013), Levitas and Attariani (2014).

Based on assumptions (A)–(C), the following mass balance equation
or the diffusive constituent is considered:

𝑐 = 0 in 𝛺+, (5)

where 𝑐 is the molar concentration of the diffusive reactant and Δ is the
Laplace operator, with the following boundary condition at the reaction
front:

𝐷�⃗�∗ ⋅ ∇𝑐 + 𝑛∗𝜔 = 0 on 𝛤∗, (6)

here 𝐷 is the diffusion coefficient of the diffusive reactant through the
ransformed material. At the reactant supply surface 𝛤a, which is a part
f the external boundary of the body, the mixed boundary condition is
rescribed:

�⃗� ⋅ ∇𝑐 − 𝛼
(

𝑐∗ − 𝑐
)

= 0 on 𝛤a, (7)

here 𝛼 is the surface mass transfer coefficient, 𝑐∗ is the solubility of
he diffusive reactant in the transformed phase, and �⃗� is the normal to
he outer boundary of the body.

To model the kinetics of the reaction front, the theory based on
he chemical affinity tensor concept (Freidin, 2013; Freidin et al.,
014; Freidin and Vilchevskaya, 2020) is used. It should be noted
hat the theory is general and covers arbitrary rheology and large
eformations; however, in the present paper, the linear elastic version
s used. According to this theory, the quantity that is referred to as the
hemical affinity tensor is the driving force for the localized chemical
eaction. The normal component of the chemical affinity tensor in the
uasi-static linear-elastic case is written as

𝑁𝑁 =
𝑛−𝑀−
𝜌−

𝜒
(

𝝈±, 𝜺±, 𝑇
)

+ 𝑛∗𝑅𝑇 ln 𝑐
𝑐∗
, (8)

where 𝑅 is the universal gas constant, 𝑇 is the absolute temperature,
and

𝜒
(

𝝈±, 𝜺±, 𝑇
)

= 𝛾 (𝑇 ) − 𝜁
(

𝝈±, 𝜺±
)

=

= 𝛾 (𝑇 ) + 1
2
𝝈− ∶ 𝜺− − 1

2
𝝈+ ∶

(

𝜺+ − 𝜺ch
)

+ 𝝈± ∶ [[𝜺]] , (9)
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where 𝜁
(

𝝈±, 𝜺±
)

characterizes the influence of the stress–strain states
on the reaction front kinetics and 𝛾 (𝑇 ) denotes the temperature-
dependent chemical energy of the reaction. The expression for the
chemical affinity tensor has been obtained from the balance laws and
the dissipation inequality.

The kinetics of the reaction is related to the driving force via
the constitutive law. In the present paper, the form of the kinetic
equation from the classical physical chemistry (Prigogine and Defay,
1954; Glansdorff and Prigogine, 1971) is used:

𝜔 = 𝑘∗𝑐
(

1 − exp
(

−
𝐴𝑁𝑁
𝑅𝑇

))

, (10)

where 𝑘∗ is a reaction rate constant. The details can be found in,
e.g., Freidin and Vilchevskaya (2020). If 𝐴𝑁𝑁 = 0 for the reaction
front surface element with normal �⃗�∗, then such surface element is at
the chemical equilibrium. In this case, the reaction rate and, therefore,
the front propagation velocity are zero. If 𝐴𝑁𝑁 = 0 is fulfilled at each
point of the reaction front, then such configuration is an equilibrium
configuration.

It should be noted that from the mathematical point of view, the
considered chemical reaction front kinetics is similar to the problem of
stress-induced phase transitions, e.g., Abeyaratne and Knowles (1991,
2006), Berezovski and Maugin (2005), where the following form of the
expression for the normal component of the velocity is used:

𝑉 ph
𝛤∗

= 𝑘ph𝜒
(

𝝈±, 𝜺±, 𝑇
)

, (11)

where 𝑘ph is a kinetic coefficient. In this case, there is no diffusive
constituent and parameter 𝛾 (𝑇 ) is no longer a chemical reaction energy,
but a difference in the free energy volume densities of the solid con-
stituents in the stress-free states. This mathematical similarity between
the chemo-mechanics and the phase transitions is used later in the
paper to study the influence of the diffusion on the stability of the
propagating interface.

3. Linear stability analysis of the reaction front

A given reaction front can be stable or unstable. The latter implies
that a perturbation of the front decays over time, while the former
implies the opposite. The considered reaction front can be either prop-
agating or at the equilibrium. The approach for analyzing the stability
of the chemical reaction fronts has been developed in Morozov (2021),
Morozov et al. (2023) based on a similar methodology developed
earlier for the stress-induced phase transition problems (Eremeev et al.,
2003; Yeremeyev et al., 2007).

The approach can be summarized as follows. Some configuration of
the reaction front is considered, at which �⃗�0

∗ denotes the position of the
points of the front and �⃗�0

∗ denotes the normal to the front. At this state,
the solutions of PDEs (3) and (5) are displacements 𝑢0± and concentra-
tion 𝑐0. The stresses and strains emerging in the body are denoted as 𝝈0

±
and 𝜺0±, respectively. From this point onwards, superscript ‘‘0’’ refers to
variables that belong to the solution corresponding to the unperturbed
configuration.

The position of the points of the front in the perturbed state is given
by

�⃗�∗ = �⃗�0
∗ + 𝜂�⃗�

0
∗ , (12)

where 𝜂 is the amplitude of the perturbation, as illustrated in Fig. 2.
The perturbation of the front necessary leads to the perturbation of the
solutions of the PDEs:

⃗± = 𝑢0± + �⃗�±, (13)

𝑐 = 𝑐0 + 𝑠, (14)

where �⃗�± and 𝑠 are the perturbations of the displacements and the
concentration, respectively. The key idea of the approach is to rewrite
the kinetic equation for the front propagation with respect to 𝜂 and
4

Fig. 2. A schematic representation of the perturbed and the unperturbed reaction fronts
(𝛤∗ and 𝛤 0

∗ , respectively).

to verify whether it increases or decreases, which corresponds to the
unstable or the stable configurations, respectively.

The perturbations above lead to two boundary value problems
(BVPs) — the first is for the considered configuration of the reaction
front (with solutions 𝑢0± and 𝑐0), the second is for the case when the re-
action front is perturbed (with solutions �⃗�± and 𝑠). To find the solution
of the perturbed BVP, expressions (13) and (14) must be substituted
into PDEs (3) and (5). However, the PDEs are now defined on a domain
with a perturbed interface. To solve the equations, it is convenient
to replace the domain by one with the unperturbed interface. This is
done by linearizing interface conditions (4) and (6) with respect to
perturbations 𝜂, �⃗�±, 𝑠 and projecting the interface conditions onto the
unperturbed geometry.

It is implied that in this procedure, terms 𝑂
(

𝜂2
)

are neglected.
Moreover, perturbation 𝜂 is a function of both space and time and the
linearization is done only with respect to the time dependency. This
means that 𝜂 and ∇𝜂 are of the same order, while 𝜂∇𝜂 and 𝜂2 are one
order higher. The same is valid for �⃗�±, for example, 𝜂, �⃗�±, ∇�⃗�± are
of the same order, while 𝜂∇�⃗�± is one order higher. This will be more
evident later when the solution is sought in a series form for the flat
reaction front and 𝜂, �⃗�±, 𝑠 are decomposed into the spatial and the
temporal parts.

For the linear momentum balance equation, the linearization and
the projection of the interface conditions onto the unperturbed geom-
etry was done in Eremeev et al. (2003) and Yeremeyev et al. (2007)
and the detailed derivation is also given in Morozov et al. (2023). This
gives the following BVP for the mechanical part of the problem:

∇ ⋅ 𝝈±
(

�⃗�±
)

= 0⃗ in 𝛺±, (15)
𝝈±

(

�⃗�±
)

= 4𝑪± ∶ ∇�⃗�±,
[[

�⃗�
]]

= −𝜂�⃗�0
∗ ⋅

[[

∇𝑢0
]]

and

�⃗�0
∗ ⋅

[[

𝝈
(

�⃗�
)]]

= ∇̃𝜂 ⋅
[[

𝝈0]] − 𝜂�⃗�0
∗ �⃗�

0
∗ ∶

[[

∇𝝈0]] on 𝛤∗,

where ∇̃ is the ‘‘flat’’ Nabla operator, containing only the derivatives
along the tangential to the interface vectors. For the diffusion equation,
the linearization and the projection of the interface conditions onto the
unperturbed geometry was done in Morozov et al. (2023), which gives
the following BVP for the diffusion:

Δ𝑠 = 0 in 𝛺+, (16)

𝐷�⃗�0
∗ ⋅ ∇𝑠 +𝐷𝜂�⃗�0

∗ �⃗�
0
∗ ∶ ∇∇𝑐0 −𝐷∇̃𝜂 ⋅ ∇𝑐0 + 𝑛∗𝛿𝜔

(

𝜂, �⃗�±, 𝑠
)

= 0 on 𝛤∗,

where 𝛿𝜔
(

𝜂, �⃗�±, 𝑠
)

is the perturbation of the reaction rate, which is
obtained by the linearization and the projection of expression (10) onto
the unperturbed geometry. It is given by

𝛿𝜔
(

𝜂, �⃗�±, 𝑠
)

= 𝑘∗𝑐
0 1
𝑅𝑇

𝑛−𝑀−
𝜌−

𝛿𝜒
(

𝜂, �⃗�±
)

+

+
(

𝑘∗𝑛∗ +
1 − 𝑛∗
𝑐0

𝜔0
)

(

𝑠 + 𝜂�⃗�0
∗ ⋅ ∇𝑐0

)

, (17)

where 𝜔0 is the reaction rate at the unperturbed state and 𝛿𝜒
(

𝜂, �⃗�±
)

is the perturbation of 𝜒
(

𝝈±, 𝜺±, 𝑇
)

. The latter is obtained by the lin-
earization and the projection of expression (9) onto the unperturbed
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𝑢

𝑢

𝑢

geometry. It should be noted that 𝜒 was introduced in Eq. (9) as a
function of 𝝈±, 𝜺±, 𝑇 that are taken at the reaction front, while here,
it is implied that for the perturbed problem, fields 𝝈0

± and 𝜺0± are fixed,
hence, 𝛿𝜒 becomes a function of 𝜂 and �⃗�±.

The linearization and the projection onto the unperturbed geometry
of the expression for 𝜒 was performed and specified for the equilib-
rium two-phase spherically-symmetric deformations in Eremeev et al.
(2003), Yeremeyev et al. (2007) within the context of the phase tran-
sition problems. It was then generalized for the case of a propagating
chemical reaction front without any symmetry restrictions in Morozov
et al. (2023). This expression contained the stresses and strains only at
one side of the interface and the normal; it was derived and used for
the analytical studies. However, a different way of writing 𝛿𝜒 is used
in the present paper. To simplify the presentation of the approach and
since the resulting system of equations is solved numerically (the details
are given below), expression (9) is directly linearized and projected
(Appendix), which results in

𝛿𝜒
(

𝜂, �⃗�±
)

=
[[

∇𝑢0
]]

∶
(

𝝈+
(

�⃗�+
)

+ 𝜂�⃗�0
∗ ⋅ ∇𝝈0

+

)

−

−
[[

𝝈0]] ∶
(

∇�⃗�− + 𝜂�⃗�0
∗ ⋅ ∇∇𝑢0−

)

. (18)

BVPs (15) and (16) should be solved to find �⃗�± and 𝑠 as functions of
𝜂 and substituted into kinetic equation (2), from which perturbation 𝜂
as a function of time should be found. Its growth or decay indicates
instability or stability, respectively, of the reaction front.

4. Stability of the planar reaction front

A chemical reaction in a layer of thickness 𝐻 is considered, as
illustrated in Fig. 3. Initial and transformed materials are considered to
be isotropic and the plane strain formulation is used. It is assumed that
the parameters and the loading are such that there exists an equilibrium
position 𝑦 = ℎ, ℎ ∈ (0,𝐻) of a planar reaction front inside the body. The
problem under consideration is to determine whether this equilibrium
configuration is stable or unstable.

The diffusive constituent is supplied through the bottom boundary.
Thus, the following boundary conditions for PDEs (3) and (5) are used:

⃗+ = 0⃗ at 𝑦 = 0, (19)

⃗− = 𝑢0𝑒𝑦 at 𝑦 = 𝐻, (20)

⃗± ⋅ 𝑒𝑥 = 0 and 𝝈± ∶ 𝑒𝑥𝑒𝑦 = 0 at 𝑥 = 0 and 𝑥 = 𝐿, (21)

𝐷�⃗� ⋅ ∇𝑐 + 𝛼
(

𝑐 − 𝑐∗
)

= 0 at 𝑦 = 0, (22)

�⃗� ⋅ ∇𝑐 = 0 at 𝑥 = 0 and 𝑥 = 𝐿, (23)

where 𝐿 is the width of the considered domain. A planar isotropic
transformation strain is considered:

𝜺ch = 𝜃
2
(

𝑰 − 𝑒𝑧𝑒𝑧
)

, (24)

where 𝑒𝑧 is the out-of-plane unit vector and 𝑰 is the unit tensor, 𝜃 is the
intrinsic volume change of the untransformed phase to the chemically
transformed phase. As the solid skeleton approach is adopted in the
present paper (Freidin and Vilchevskaya, 2020), 𝜃 is treated as a
parameter of the chemical reaction. For simplicity, isotropic elasticity
will be considered from this point onwards, with 𝜆± and 𝜇± standing
for the Lamé parameters corresponding to domains 𝛺±.

The choice of boundary conditions in terms of displacements is
motivated, in particular, by the fact that in the case of solid–solid phase
transitions, the two-phase state may be a priori unstable if the exter-
nal loading (traction) is prescribed at the boundary, as discussed in,
e.g., Yeremeyev et al. (2007), Freidin et al. (2021). Since, in the present
paper, the phase transition and the chemo-mechanical problems are
compared, the prescribed displacements at the boundary are imposed.
In addition, when the material parameters are fixed, the variation of 𝑢0
changes the equilibrium position of the front within the domain, which
is convenient for further investigations.
5

Fig. 3. A schematic representation of the planar chemical reaction front.

Following the procedure outlined in Section 3, the unperturbed BVP
is solved first to obtain 𝑢0± and 𝑐0, and, hence, to find 𝝈0

± and 𝜺0±. For
the planar problem at the equilibrium configuration considered here,
the closed form expressions for these quantities can be easily obtained.
It should be noted that in this case, the displacement field is piecewise-
linear and 𝑐0 = 𝑐∗. Consequently, ∇𝑐0, ∇𝝈0

±, ∇∇𝑢0±, 𝜒0, 𝜔0 are equal to
zero.

To solve the perturbed BVP, the boundary conditions must be
written by substituting Eqs. (13)–(14) into (19)–(23), resulting in

�⃗�± = 0⃗ at 𝑦 = 0 and 𝑦 = 𝐻

�⃗�± ⋅ 𝑒𝑥 = 0 and 𝝈±
(

�⃗�±
)

∶ 𝑒𝑥𝑒𝑦 = 0, at 𝑥 = 0 and 𝑥 = 𝐿,

𝐷�⃗� ⋅ ∇𝑠 + 𝛼𝑠 = 0 at 𝑦 = 0,

�⃗� ⋅ ∇𝑠 = 0 at 𝑥 = 0 and 𝑥 = 𝐿.

For the planar reaction front, �⃗�0
∗ = 𝑒𝑦 and 𝜂 = 𝜂 (𝑥, 𝑡). It is useful to

rewrite the perturbation of the solution in the component form:

�⃗�± = 𝑤±
𝑥 (𝑥, 𝑦, 𝑡) 𝑒𝑥 +𝑤

±
𝑦 (𝑥, 𝑦, 𝑡) 𝑒𝑦, (25)

𝑠 = 𝑠 (𝑥, 𝑦, 𝑡) . (26)

The solution of the perturbed BVPs (15) and (16) results in the
dependency of displacements �⃗�± and concentration 𝑠 (and, therefore,
the reaction front velocity) on amplitude 𝜂 of the perturbation of the
front. For the case of the planar front, these dependencies can be
obtained semi-analytically in a series form (the coefficients are still
found computationally). To satisfy the boundary conditions at 𝑥 = 0
and 𝑥 = 𝐿, the solution is sought as series

𝑤±
𝑥 (𝑥, 𝑦, 𝑡) =

∞
∑

𝑛=1
𝑈±
𝑛 (𝑦, 𝑡) sin

(

𝑘𝑛𝑥
)

, 𝑤±
𝑦 (𝑥, 𝑦, 𝑡) =

∞
∑

𝑛=1
𝑉 ±
𝑛 (𝑦, 𝑡) cos

(

𝑘𝑛𝑥
)

,

𝜂 (𝑥, 𝑡) =
∞
∑

𝑛=1
𝜉𝑛 (𝑡) cos

(

𝑘𝑛𝑥
)

, 𝑠 (𝑥, 𝑦, 𝑡) =
∞
∑

𝑛=1
𝑆𝑛 (𝑦, 𝑡) cos

(

𝑘𝑛𝑥
)

, 𝑘𝑛 =
𝑛𝜋
𝐿
.

First, the perturbed displacements can be found. One can show that
functions 𝑈±

𝑛 (𝑦, 𝑡) and 𝑉 ±
𝑛 (𝑦, 𝑡) that satisfy Eq. (15) are

𝑈±
𝑛 (𝑦, 𝑡) = 𝐴±

𝑛 (𝑡) exp
(

𝑘𝑛𝑦
)

+

+ 𝐵±
𝑛 (𝑡) 𝑦 exp

(

𝑘𝑛𝑦
)

+ 𝐶±
𝑛 (𝑡) exp

(

−𝑘𝑛𝑦
)

+𝐷±
𝑛 (𝑡) 𝑦 exp

(

−𝑘𝑛𝑦
)

,

𝑉 ±
𝑛 (𝑦, 𝑡) =

(

−𝐴±
𝑛 (𝑡) + 𝐵

±
𝑛 (𝑡)

𝜆± + 3𝜇±
𝜆± + 𝜇±

1
𝑘𝑛

)

exp
(

𝑘𝑛𝑦
)

−

− 𝐵±
𝑛 (𝑡) 𝑦 exp

(

𝑘𝑛𝑦
)

+
(

𝐶±
𝑛 (𝑡) +𝐷±

𝑛 (𝑡)
𝜆± + 3𝜇±
𝜆± + 𝜇±

1
𝑘𝑛

)

exp
(

−𝑘𝑛𝑦
)

+

+𝐷±
𝑛 (𝑡) 𝑦 exp

(

−𝑘𝑛𝑦
)

.

Functions 𝐴±
𝑛 , 𝐵±

𝑛 , 𝐶±
𝑛 , 𝐷±

𝑛 are then found from the boundary and
the interface conditions of BVP (15). The time dependency of these
functions comes from the dependency of the interface conditions on
𝜂 (𝑥, 𝑡). One should note that, due to the boundary and the interface
conditions, each function 𝐴±

𝑛 , 𝐵±
𝑛 , 𝐶±

𝑛 , 𝐷±
𝑛 is proportional to 𝜉𝑛 (𝑡),

e.g., 𝐴±
𝑛 (𝑡) = 𝑎±𝑛 𝜉𝑛 (𝑡), where 𝑎±𝑛 are constants. This allows expressing

𝛿𝜒 as a function of 𝜉𝑛:

𝛿𝜒 (𝑥, 𝑡) =
∞
∑

𝐿ph
𝑛 𝜉𝑛 (𝑡) cos

(

𝑘𝑛𝑥
)

, (27)

𝑛=1
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where 𝐿ph
𝑛 is a constant.

Next, the perturbed concentration can be obtained. One can show
that function 𝑆𝑛 (𝑦, 𝑡) that satisfies Eq. (16) is

𝑛 (𝑦, 𝑡) = 𝐸𝑛 (𝑡) exp
(

𝑘𝑛𝑦
)

+ 𝐹𝑛 (𝑡) exp
(

−𝑘𝑛𝑦
)

. (28)

unctions 𝐸𝑛, 𝐹𝑛 are found from the boundary conditions. Furthermore,
ue to the boundary conditions, each function 𝐸𝑛, 𝐹𝑛 is proportional to
ph
𝑛 𝜉𝑛 (𝑡). More specifically,

𝑛 (𝑡) = 𝐿ph
𝑛 𝜉𝑛 (𝑡)

−𝜓
𝜙𝑛

, 𝐹𝑛 (𝑡) = 𝐿ph
𝑛 𝜉𝑛 (𝑡)

−𝜓
𝜙𝑛

𝐷𝑘𝑛 − 𝛼
𝐷𝑘𝑛 + 𝛼

, (29)

where the following quantities are introduced:

𝜙𝑛 =
(

𝐷𝑘𝑛 + 𝑛2∗𝑘∗
)

exp
(

𝑘𝑛ℎ
)

−
(

𝐷𝑘𝑛 − 𝑛2∗𝑘∗
) 𝐷𝑘𝑛 − 𝛼
𝐷𝑘𝑛 + 𝛼

exp
(

−𝑘𝑛ℎ
)

,

𝜓 = 𝑛∗𝑘∗𝑐∗
1
𝑅𝑇

𝑛−𝑀−
𝜌−

.

Linearization of the normal front velocity (2), where 𝑂
(

𝜂2
)

terms
re neglected, gives

ch
𝛤∗

= �⃗�∗ ⋅
d
d𝑡
�⃗�∗ =

d𝜂
d𝑡
. (30)

By using kinetic equation Eq. (2), substituting (27) into (17), then
substituting (29) into (28) and into the expression for 𝑠 (𝑥, 𝑦, 𝑡) and into
17), the following equation for the evolution of the perturbation is
btained:
𝑛∗
𝜓

𝜌−
𝑛−𝑀−

d𝜉𝑛
d𝑡

= 𝐿ch
𝑛 𝜉𝑛, (31)

here

ch
𝑛 = 𝐿ph

𝑛

⎛

⎜

⎜

⎝

1 −
𝑛2∗𝑘∗ exp

(

𝑘𝑛ℎ
)

+ 𝑛2∗𝑘∗
𝐷𝑘𝑛−𝛼
𝐷𝑘𝑛+𝛼

exp
(

−𝑘𝑛ℎ
)

𝜙𝑛

⎞

⎟

⎟

⎠

. (32)

The specific form of the obtained expression for 𝐿ch
𝑛 is useful in the

following way. It is easy to show that the expression in brackets in (32)
is always positive. Indeed, Eq. (32) can be rewritten as

𝐿ch
𝑛 = 𝐿ph

𝑛
2𝐷𝑘𝑛

(

𝐷𝑘𝑛 sinh
(

𝑘𝑛ℎ
)

+ 𝛼 cosh
(

𝑘𝑛ℎ
))

𝜙𝑛
(

𝐷𝑘𝑛 + 𝛼
) , (33)

while 𝜙𝑛 can be rewritten as

𝜙𝑛 = 2

(

𝐷2𝑘2𝑛 + 𝛼𝑛
2
∗𝑘∗

)

sinh
(

𝑘𝑛ℎ
)

+
(

𝐷𝑘𝑛𝑛2∗𝑘∗ +𝐷𝑘𝑛𝛼
)

cosh
(

𝑘𝑛ℎ
)

𝐷𝑘𝑛 + 𝛼
.

he fraction in (33) is always positive for positive 𝐷, 𝑘𝑛, 𝛼, ℎ, 𝑘∗. This
eans that signs of 𝐿ch

𝑛 and 𝐿ph
𝑛 always coincide.

If a stress-induced phase transition problem is considered, for which
the velocity is defined by Eq. (11), similar analysis of a perturbed
boundary gives the following kinetics for the amplitude of the pertur-
bations
1
𝑘ph

d𝜉𝑛
d𝑡

= 𝐿ph
𝑛 𝜉𝑛. (34)

ince 𝜉𝑛 is the amplitude of the 𝑛th harmonic of the front perturbation,
ultipliers 𝐿ch

𝑛 and 𝐿ph
𝑛 are proportional to the exponential growth fac-

or of the harmonic for the chemo-mechanical and the phase transition
roblems, respectively. For both problems, the sign of these multiplies
efines the behavior of the solution — if the sign is negative for each 𝑛,
he perturbations decay in time. If at least one 𝐿𝑛 is positive, then the
erturbation with wave number 𝑘𝑛 grows exponentially, which leads to
he instability of the interface.

Since 𝐿ch
𝑛 and 𝐿ph

𝑛 have identical signs, the stability of a phase
oundary in the analogous phase transition problem necessarily results
n the stability of a chemical reaction front in the chemo-mechanical
roblem. Therefore, the diffusive reactant does not influence the sta-
ility of the planar front — the diffusion process cannot stabilize the
nstable front and similarly otherwise. This makes it possible to reduce
6

he analysis of the reaction front stability to the analysis of the stability
of the phase boundaries carried out earlier (e.g., Grinfeld, 1991; Fried,
1992, 1993; Fu and Freidin, 2004). It should also be noted that the
necessary criterion of the stability of an arbitrary phase interface is the
stability of planar reaction fronts corresponding to various points of the
examined interface (Gurtin, 1983).

4.1. Influence of loading and material parameters on stability of the planar
front

As outlined in Section 4, functions 𝐴±
𝑛 , 𝐵±

𝑛 , 𝐶±
𝑛 , 𝐷±

𝑛 should be found
y solving the system of equations consisting of the boundary and the
nterface conditions of BVP (15). These functions are needed to obtain
ph
𝑛 . The difficulty with solving the aforementioned system is that with
rowing 𝑛, the system becomes ill-conditioned. This means that for
igher wave numbers, an accurate numerical solution of this system
annot be guaranteed.

The solution of the equations to obtain 𝐿ph
𝑛 and 𝐿ch

𝑛 for given
roblem parameters has been implemented in a small Matlab code.1 It
hould also be mentioned that for all parameter sets, considered by the
uthors, the absolute values of 𝐿ph

𝑛 increased with 𝑛 for both stable and
nstable configurations. If such behavior is general, i.e., ||

|

𝐿ph
𝑛
|

|

|

increases
ith 𝑛 for 𝑛 > 𝑛0, then it should be sufficient to calculate first 𝑛0 values
f 𝐿ph

𝑛 to verify this necessary stability criterion.
Using the developed methodology of the linear stability analysis,

t is possible to obtain stability regions in the space of material and
oading parameters. Since it has been shown that the diffusion pa-
ameters of the model do not influence the stability behavior, 𝐿ph

𝑛 has
been calculated. The Poisson’s ratios were fixed (the values are given
below); the Young’s modulus of the untransformed material was taken
to be 𝐸− = 60; the externally-applied displacement was taken to be
𝑢0 = 0.02. With this, the parametric space of the problem is defined
by ratio 𝐸+∕𝐸−, chemical transformation 𝜃 and chemical energy 𝛾. For
simplicity, 𝛾 was selected such that the equilibrium position is always
exactly at ℎ = 0.5. From the physical point of view, the variation of 𝛾
may correspond to the variation of the temperature.

By varying 𝐸+∕𝐸− and 𝜃, one can obtain areas, where the values of
𝐿ph
1 are positive or negative, as illustrated in Fig. 4, left. The ratio of

the Young’s moduli is varied from 0.5 to 3, which is a reasonable range
that covers some cases, e.g., Morozov et al. (2020), and parameter 𝜃 is
aried from 0 to 0.05 to be consistent with the small-strains approach.
he corresponding values of energy parameter 𝛾 are shown in Fig. 4,
ight.

The values of 𝐿ph
𝑛 also depend on the Poisson’s ratio. This is demon-

trated in Fig. 5 that presents contour plots showing 𝐿ph
1 as a function

f 𝐸+∕𝐸− and 𝜃, similarly to Fig. 4, left, but for different sets of the
oisson’s ratios. The variation of the Poisson’s ratios changes quanti-
atively the stability zones in the parametric space, which can be seen
rom the positions of the black lines (corresponds to 𝐿ph

1 = 0), although
ualitatively the behavior of 𝐿ph

1 in the parametric space is similar for
ll considered sets of the Poisson’s ratios.

Since the linear stability analysis criterion is only a necessary cri-
erion, regions where 𝐿ph

1 > 0 correspond to the system being unsta-
le, while regions where 𝐿ph

1 ≤ 0 require additional verification for
≥ 2. Using these results, the provisionally stable and the unstable

onfigurations were selected for the further numerical study, Section 6.

. Numerical approaches for moving chemical reaction fronts

As outlined in the introduction, the classical remeshing procedure
s a successful approach for modeling kinetics of the chemical reac-
ion fronts (Freidin et al., 2016, 2022), including an approach to an
quilibrium (Morozov, 2021). The procedure, however, has its own

1 The code is available upon request.
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Fig. 4. The values of operator 𝐿ph
1 (left) and the corresponding values of 𝛾 (right) in the material parameter space. Solid black lines represent 𝐿ph

1 = 0 level in the left subfigure
and 𝛾 = 0 level in the right subfigure. The Poisson’s ratios 𝜈+ = 𝜈− = 0.25 are used.
Fig. 5. The values of operator 𝐿ph
1 in the material parameter space for different values of the Poisson’s ratios: left subfigure for 𝜈− = 0.1 and 𝜈+ = 0.3; right subfigure for 𝜈− = 0.3

and 𝜈+ = 0.15. Solid black lines represent 𝐿ph
1 = 0 level.
disadvantages and one of the aims of the present paper is to com-
pare it with the recently-proposed extension of the CutFEM approach
to chemo-mechanics (Poluektov and Figiel, 2019). For the details of
the numerical approaches the reader is referred to the corresponding
publications. Since the comparison is performed for linear elasticity,
the CutFEM-based method has been simplified to a linear elastic set-
ting. Furthermore, the calculation of stresses and strains to model the
interface kinetics has been changed from the approach given in Section
4.4.2 of Poluektov and Figiel (2019) to the new method that is given
below.

Although the details of the numerical procedures are given in Mo-
rozov (2021) and Poluektov and Figiel (2019), it can be useful to
outline the general concept of the numerical approach to the chemo-
mechanical problem. In both approaches, the chemical reaction front is
computationally represented by a set of points in 2D, connected by line
segments. An explicit time stepping is used to move the front, which
implies that for a given position of the front, velocity 𝑉𝛤∗ at each point
must be calculated and then used to move the points of the front by
𝑉𝛤∗Δ𝑡 along the normal to the front, where Δ𝑡 is the time step. The
normal at a point is defined as a weighted average of the normals to
the adjacent line segments. To calculate the velocity at each point, the
stresses, the strains and the concentration are required. Therefore, at
each time step, given the configuration (position) of the front, Eq. (3)
with the corresponding boundary and interface conditions is solved
first and the stresses and strains are found. Then, Eq. (5) with the
corresponding boundary conditions is solved, where the stresses and
strains enter boundary condition (6). This gives the concentration at the
front and allows calculating the velocity of the front. Using the latter,
the new configuration of the front is calculated (i.e., for the next time
step). The difference between the considered numerical approaches
consists in how the PDEs are solved — either on the cut mesh with
weakly-enforced boundary/interface conditions or on the mesh that is
newly generated at each time step.

5.1. Calculation of stresses and strains for interface movement

To calculate the interface velocity, given by expression (2), the
stresses and strains at the interface points must be evaluated. Previously
7

(Section 4.4.2 of Poluektov and Figiel, 2019), a simple inter-element
averaging procedure to calculate these stresses and strains has been
proposed (it will be referred to as the old procedure). Since then, a more
accurate procedure has been implemented and is described below.

The old procedure takes directly the finite-element stresses and
strains of the elements adjacent to the interface point and averages
them. The problem with this is that the directly calculated finite-
element stresses and strains are of a ‘‘bad quality’’ — they have worse
convergence rate than the displacements. Meanwhile, the simulations
discussed in the present paper use one of the major advantages of the
CutFEM approach — they are performed on a structured mesh. This
can be used to calculate more accurate stresses and strains. It should
be emphasized that this is a postprocessing step, not the actual solution
of the linear momentum balance equation.

After the nodal solution is obtained (i.e., the displacements are
obtained using the CutFEM method), the gradient of the displacements
is calculated at each node by finite differences, using the fact that
the mesh is structured. In the current implementation of the proce-
dure, the second-order accurate first derivatives of the displacements
are calculated. For example, 𝜕𝑢𝑖𝑥∕𝜕𝑥 at node 𝑖 is approximated by
(

𝑢𝑖+1𝑥 − 𝑢𝑖−1𝑥
)

∕2Δ𝑥, where 𝑢𝑖+1𝑥 and 𝑢𝑖−1𝑥 are the displacements at the
nodes to the right and to the left of node 𝑖, respectively. If node 𝑖
is at a boundary, a three-point stencil and forward/backward finite-
difference is used. Similarly for other derivatives, which form the
gradient of the displacements. Then, the gradients of the displacements
at the nodes can be used to calculate the gradients at the intersection
points of the interface and the mesh by simple linear interpolation
between the nodes along the element edges. Having the gradients of
the displacements, the stresses and strains can be calculated. The main
advantage of this procedure is that the obtained quantities at the nodes
are second-order accurate, if the linear elements are used.

6. Numerical results for the chemical reaction front kinetics

The CutFEM-based and the remeshing methods are compared in
three different examples. The first example is the propagation of a flat
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Fig. 6. Propagation of a chemical reaction front in a 2D body for two different cases — the stable and the unstable behavior, which differ by the set of material parameters and
he loading. Initial configuration of the chemical reaction front (upper left) is identical for both cases and has a small perturbation. The stable case is illustrated by the evolution of
he 𝑦-coordinate of the central point of the interface. The CutFEM and the remeshing solutions at three interface points are compared (right, inset). The unstable case is illustrated
y four snapshots of the reaction front at different times (bottom). Cropped examples of the finite-element meshes are shown for one of the snapshots (center left).
eaction front, with an initially applied perturbation, in a 2D geometry
ith plane strain formulation. To investigate the performance of the
ethods, two different scenarios are considered — stable and unstable

ehavior (material parameters are given below). The flat reaction front
ith a perturbation is initiated far from the equilibrium position. In the

ase of equilibrium being stable, the perturbation diminishes and the
ront approaches the equilibrium position. When the selected elastic
aterial constants correspond to the equilibrium being unstable, the

mplitude of the perturbation grows (exponentially, as shown analyt-
cally in Section 4), even before the front approaches the equilibrium
osition. Both scenarios are illustrated in Fig. 6.

For the stable case, the time-evolution of the reaction front is shown
y plotting the 𝑦-coordinate of the central point of the interface (only

one point is selected because the difference between the 𝑦-coordinates
of the points of the interface becomes invisible due to the decay of
the initial perturbation). To compare the CutFEM and the remeshing
solutions, three different points of the interface 𝑥 = 1∕3, 1∕2, 2∕3 are
selected. The absolute difference between the positions of the points
resulting from two methods is shown in the inset, which is in the range
of 10−4 to 10−6.

For the unstable case, the time-evolution of the reaction front is
shown by snapshots of the front configuration at four different moments
of time. It can be seen that the discrepancy between the methods
accumulates with time and is mostly revealed at the boundaries of the
domain. This is related to the instability of the interface — as any
perturbation of the front should grow in time, a numerical perturbation
(i.e., a numerical error) also grows in time. The discrepancy at the edges
of the domain is related to slightly different ways of calculating stresses
and strains at the interface.

For this example, 𝐻 = 𝐿 = 1 are taken. A plane-strain formulation
is considered. The initial position of the front is described by the
8

following equation: 𝑦 = 0.1 + 0.002 cos (6𝜋𝑥). The transformation strain
is taken to be 𝜃 = 0.01. For the stable case, the Lamé parameters of the
materials and the applied displacement are taken to be 𝜇+ = 58, 𝜇− =
26, 𝜆+ = 50, 𝜆− = 10, 𝑢0 = 0.0453. For the unstable case, the parameters
are taken to be 𝜇+ = 50, 𝜇− = 66, 𝜆+ = 66, 𝜆− = 34, 𝑢0 = −0.0381. Since
the chemical and the diffusion parameters do not affect the stability of
the interface at the equilibrium position, only one set of the following
chemical and diffusion parameters is used: 𝛼∕𝐷 = 2, 𝑘∗∕𝐷 = 0.1,
𝛾 = 0.05, 𝑛−𝑀−∕

(

𝜌−𝑅𝑇
)

= 0.0177, 𝑘∗𝑐∗𝑛−𝑀−∕𝜌− = 0.0432, 𝑛∗ = 1.
For the CutFEM, the mesh consisting of linear elements in the form of
isosceles right triangle with the side of Δ𝑥 is used. In the remeshing
procedure, linear quads with full integration are used, while the size
of an element is approximately equal to Δ𝑥. Parameter Δ𝑥 = 1∕64 is
taken. Time steps of Δ𝑡 = 80 and Δ𝑡 = 160 are taken for the stable and
unstable cases, respectively. For the CutFEM, numerical parameters,
which were denoted as 𝜆 and 𝜅 in Poluektov and Figiel (2019), are
taken to be 104 and 10−2, respectively. The boundary conditions given
by Eqs. (19)–(23) are used.

The second considered case is similar to the first example. However,
additional shear displacements are applied at the top boundary. This
creates a shear stress state; therefore, if the initial position of the
interface is horizontal, in the case of stable parameters, the interface
should rotate as it approaches the equilibrium position. Exactly this
is observed in the results of numerical simulations shown in Fig. 7.
The time-evolution of the reaction front is shown by plotting the 𝑦-
coordinate of three different points of the interface, which have 𝑥 =
1∕5, 1∕2, 4∕5, for both approaches. Furthermore, the snapshots of the
front configuration at four different moments of time are plotted. As
in the previous example, both approaches give close results; small
discrepancies can be attributed to a different way of calculating stresses
and strains at the interface within the approaches.

For this example, the initial position is taken to be line 𝑦 = 0.1.

All other parameters are taken to be the same as in the stable case of
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Fig. 7. Propagation of a chemical reaction front in a 2D body with applied shear loading. The kinetics is illustrated by the evolution of the 𝑦-coordinate of three points of the
ront (right), as well as by four snapshots of the reaction front at different times (left). The initial configuration of the chemical reaction front is shown in the lower-left snapshot.
he loading case is schematically illustrated in the inset (right).
he first example. For the mechanical problem, the following boundary
onditions are used: the clamped bottom boundary, the stress-free left
nd right boundaries, the prescribed displacements at the top boundary,
𝑢− = 𝑢0𝑒𝑦 + 0.01𝑒𝑥. For the diffusion problem, the same boundary
onditions as in the previous example are used.

The third example focuses on a different topology of the reaction
ront — a closed curve. The outer material is the chemically trans-
ormed phase, the inner — the untransformed phase. In the previous
tudy of chemical reaction front stability (Morozov, 2021), cylindrical
eometries have been considered and a set of parameters leading to a
table configuration of the circular reaction front have been established.
n the present paper, the geometry is changed to a square, which creates
nhomogeneous stress distributions (with respect to the polar angle in
he polar coordinate system), and, therefore, leads to a more complex
quilibrium configuration. To highlight the effect of stresses on the
quilibrium configuration of the front, two different loading cases
re considered — biaxial stretching and piecewise-linear prescribed
isplacements. Thus, for the mechanical part of the problem, for the
irst loading case, the following boundary conditions are prescribed:

𝑢+ ⋅ 𝑒𝑦 = 0 at 𝑦 = 0, 𝑢+ ⋅ 𝑒𝑦 = 𝑢0 at 𝑦 = 𝐻,

⃗+ ⋅ 𝑒𝑥 = 0 at 𝑥 = 0, 𝑢+ ⋅ 𝑒𝑥 = 𝑢0 at 𝑥 = 𝐿, 𝑢0 = 0.076,

nd 𝝈+ ∶ 𝑒𝑥𝑒𝑦 = 0 on all boundaries. For the second loading case, the
ollowing displacements are prescribed on the boundaries:

𝑢+ = 0.025 (𝑥 − 1) 𝑒𝑥 + 0.025
(

�⃗� ⋅ 𝑒𝑦
)

(|𝑥 − 1| + 1) 𝑒𝑦 at 𝑦 = 0 and 𝑦 = 𝐻,

⃗+ = −0.025
(

�⃗� ⋅ 𝑒𝑥
)

(|𝑦 − 1| + 2) 𝑒𝑥 + 0.05 (𝑦 − 1) 𝑒𝑦 at 𝑥 = 0 and 𝑥 = 𝐿.

For the diffusion problem, the mixed boundary condition, Eq. (7), is
prescribed on all boundaries.

The initially circular configuration of the front evolves into two
different shapes for these two loading scenarios, which are illustrated
in Fig. 8. As in the previous examples, during the initial stage (fast
kinetics), both methods produce indistinguishable results.

At the final stage, i.e., close to the equilibrium configuration (when
the velocity of the front becomes relatively small), the CutFEM-based
approach produces an artefact — some parts of the front tend to align
with the nearest element edges. There might be several reasons for this.
The first reason may come from the numerical error in the stresses and
strains (i.e., from the numerical error in the derivative of the solution
of the finite-element problem), which enters the expression for the
velocity. When the stress and strain dependency has been excluded
from the kinetics (results are not shown), this artefact disappeared.
9

It should be emphasized that the new procedure of extracting the
stresses and strains (outlined in Section 5.1) results in the second-
order accurate quantities relying on the structured mesh, and due to
this procedure, only small sections of the front are subjected to this
artefact, as seen in Fig. 8 at 𝑡 = 15000. If the new procedure is not
used and simple inter-element stress and strain averaging is utilized (as
described in Section 4.4.2 of Poluektov and Figiel, 2019), the artefact is
much more severe (results are not shown) — the entire reaction front
aligns with the nearest element edges at the equilibrium position. It
can be concluded that the order of elements, hence the accuracy of the
stresses and strains, is related to the emergence of this artefact, and
higher-order elements may lead to a more smooth numerically-obtained
reaction front at the equilibrium. It should also be noted that there are
other post-processing methods, e.g., Payen and Bathe (2011, 2012), not
relying on the structured mesh and that can extract the stresses and
strains of a higher quality than ones given by a direct finite-element
solution.

The second reason for the emergence of the artefact may be the nu-
merical error in the normal to the front. In the current implementation,
the front is a piecewise-linear curve; it is linear within each element and
changes slope at the intersection points with the mesh. The normal at
an intersection point is defined as a weighted average of the normals
to the adjacent line segments. More elaborate ways of representing the
front, such as by using the level-set method, as was done in Burman
et al. (2018), may also lead to a more smooth reaction front at the
equilibrium.

For this example, 𝐻 = 𝐿 = 2 are taken. The initial position is taken
to be a circle with radius 0.73 in the middle of the square domain. The
transformation strain is taken to be 𝜃 = 0.1. The Lamé parameters of
the materials are taken to be 𝜇+ = 10.0, 𝜇− = 24.4, 𝜆+ = 24.9, 𝜆− = 58.6.
The same chemical and diffusion parameters are used as in the first
example, apart from 𝛾 = −0.15. The time step of Δ𝑡 = 50 is taken. For
the CutFEM-based approach, spatial step of Δ𝑥 = 1∕32 is taken, for the
remeshing approach, Δ𝑥 ≈ 0.0116 is taken for the first loading case and
Δ𝑥 ≈ 0.0077 is taken for the second loading case.

7. Conclusions and outlook

The stability problem of the planar chemical reaction front was
studied using analytical and numerical approaches. In the analyti-
cal approach, the linearized perturbed boundary value problem was
solved. The kinetics of the stress-dependent localized chemical reaction
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Fig. 8. The intermediate and the final configurations of a closed-curve reaction front in a 2D body (center) under two different loading conditions. The loading conditions as well
as the initial configurations of the front are illustrated schematically (left). Cropped examples of the finite-element meshes are shown for the second loading scenario (right).
w
v

was modeled using the chemical affinity tensor approach. For mathe-
matically similar models of phase transitions and localized chemical
reactions, it was shown that in the case of a planar interface and the
chosen constitutive law for the reaction rate, the diffusion parameters
do not affect the stability of the equilibrium configuration, i.e., the
stability of the interface is defined entirely by the mechanical properties
of the materials in both phase and chemical transformation problems.
Based on this, the stability regions in the space of the material and
the loading parameters were obtained. The ‘‘stable’’ and ‘‘unstable’’
parameters were used to validate the developed numerical procedures.

In the numerical treatment of the problem, two approaches for mod-
elling of the chemical reaction front propagation were considered. Both
the CutFEM-based and the remeshing methods show the same kinetics
of the sharp reaction front and are able to capture its stability behavior.
However, when the interface approaches the reaction blocking state,
the CutFEM-based approach can produce minor artefacts, when some
parts of the interface tend to align with the nearest element boundary.
The inaccuracy in the interface position is order of the element size.
As for the remeshing procedure, it requires more implementational
effort for tracking the position of the interface, e.g., writing scripts
to handle the intersections of the front with the geometry and with
itself. In addition, for all studied cases, regeneration of the mesh at
each iteration took more computational time than the actual solution of
the finite-element problem. Nevertheless, both studied methods can be
used to model the chemical reaction front kinetics and to analyze the
stability of the interface propagation. The developed numerical tools
can now be used to investigate the stability of phase boundaries and
chemical reaction fronts in materials with more complex constitutive
behavior and undergoing large deformations.
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Appendix. Derivation of the perturbation of the mechanical en-
ergy

Using the perturbation of the interface, Eq. (12), it can be written
that for any field 𝑎 defined in volume 𝛺+ or 𝛺−, its value at the position
of the perturbed interface can be expressed via its value at the position
of the unperturbed interface as

𝑎|�⃗�∗
= 𝑎|�⃗�0

∗
+ 𝜂�⃗�0

∗ ⋅ ∇𝑎|�⃗�0
∗
+ 𝑂

(

𝜂2
)

. (35)

When the stresses and strains are considered, for the perturbed prob-
lem, the entire fields are affected by the perturbation of the displace-
ments, Eq. (13), resulting in

𝝈± = 𝝈±
(

𝑢±
)

= 𝝈±
(

𝑢0± + �⃗�±
)

= 𝝈0
± + 𝝈±

(

�⃗�±
)

, (36)

𝜺± = 𝜺0± + 𝜺±
(

�⃗�±
)

. (37)

The values of these fields at the position of the perturbed interface
are substituted into mechanical energy 𝜒 , Eq. (9). These values can
be expressed via the values of these fields at the position of the
unperturbed interface as

𝝈±
|

|�⃗�∗
=

(

𝝈0
± + 𝝈±

(

�⃗�±
)

+ 𝜂�⃗�0
∗ ⋅ ∇𝝈0

±

)

|

|

|

|�⃗�0
∗

+ 𝑂
(

𝜂2
)

=

=
(

𝝈0
± + 𝝈𝛿±

)

|

|

|�⃗�0
∗
+ 𝑂

(

𝜂2
)

, (38)

𝜺±||�⃗�∗
=

(

𝜺0± + 𝜺±
(

�⃗�±
)

+ 𝜂�⃗�0
∗ ⋅ ∇𝜺0±

)

|

|

|

|�⃗�0
∗

+ 𝑂
(

𝜂2
)

=

=
(

𝜺0± + 𝜺𝛿±
)

|

|

|�⃗�0
∗
+ 𝑂

(

𝜂2
)

, (39)

here 𝝈𝛿± and 𝜺𝛿± are introduced to shorten the notation. Now, these
alues can be substituted into 𝜒 . In the following derivation, �⃗�0

∗ is omit-

ed starting from the second line. The value of 𝜒 can be transformed as
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follows:

𝜒 = 𝛾 +
( 1
2
𝝈− ∶ 𝜺− − 1

2
𝝈+ ∶

(

𝜺+ − 𝜺ch
)

+ 𝝈+ ∶
(

𝜺+ − 𝜺−
)

)

|

|

|

|�⃗�∗

=

= 𝛾 + 1
2
𝝈0
− ∶ 𝜺0− + 1

2
𝝈0
− ∶ 𝜺𝛿− + 1

2
𝝈𝛿− ∶ 𝜺0− + 1

2
𝝈0
+ ∶

(

𝜺0+ + 𝜺ch
)

+

+ 1
2
𝝈0
+ ∶ 𝜺𝛿+ + 1

2
𝝈𝛿+ ∶

(

𝜺0+ + 𝜺ch
)

− 𝝈0
+ ∶ 𝜺0− − 𝝈0

+ ∶ 𝜺𝛿− − 𝝈𝛿+ ∶ 𝜺0−+

+ 𝑂
(

𝜂2
)

= 𝜒0 −
[[

𝝈0]] ∶ 𝜺𝛿− +
[[

𝜺0
]]

∶ 𝝈𝛿+ + 𝑂
(

𝜂2
)

= 𝜒0−

−
[[

𝝈0]] ∶
(

𝜺−
(

�⃗�−
)

+ 𝜂�⃗�0
∗ ⋅ ∇𝜺0−

)

+
[[

𝜺0
]]

∶
(

𝝈+
(

�⃗�+
)

+ 𝜂�⃗�0
∗ ⋅ ∇𝝈0

+

)

+

+ 𝑂
(

𝜂2
)

,

where 𝜒0 is the value of 𝜒 at the unperturbed state.
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