45 research outputs found

    Optical Properties of Some New Azo Photoisomerizable Bismaleimide Derivatives

    Get PDF
    Novel polythioetherimides bearing azobenzene moieties were synthesized from azobismaleimides and bis-2-mercaptoethylether. Kinetics of trans-cis photoisomerization and of thermal conversion of cis to trans isomeric forms were investigated in both polymer solution and poly(methyl methacrylate) doped films using electronic absorption spectroscopy. Thermal recovery kinetics is well described by a two-exponential relation both in solution and polymer matrix, while that of low molecular weight azobismaleimide fit a first-order equation. The photoinduced cis-trans isomerization by visible light of azobenzene chromophores was examined in solution and in polymer films. The rate of photoinduced recovery was very high for azobismaleimides

    Revealing the Effect of Synthesis Conditions on the Structural, Optical, and Antibacterial Properties of Cerium Oxide Nanoparticles

    No full text
    Cerium oxide nanoparticles were prepared by a precipitation method using Ce(IV) sulphate as precursor dispersed in glycerol with varying synthesis parameters such as temperature or precipitating agent. The structural and morphological characteristics of the obtained nanoparticles were investigated by X-ray diffraction, transmission electron microscopy, and diffuse reflectance spectroscopy. The crystallite size of the nanoparticles varied between 13 and 17 nm. The presence of Ce3+ and Ce4+ was proved by XPS data in the CeO2 samples and the conservation of the fluorite structure was evinced by X-ray diffractograms with a contraction of the lattice parameter, regardless of the size of the nanoparticle. From diffuse reflectance spectra, two band gap energy values for the direct transition were observed. Depending on the synthesis condition, the red shift of gap energy and the blue shift of Urbach energy with increasing content of Ce3+ were ascertained. The antibacterial tests revealed that the cerium oxide nanoparticles show good antimicrobial activity towards the common pathogens Escherichia coli and Staphylococcus aureus

    Theoretical study on ÎČ-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole

    No full text
    The synthesis of the ÎČ-cyclodextrin/propiconazole nitrate inclusion complex and the advantages of the encapsulation of this drug were recently reported, but the experimental data only partially revealed the structure of the supramolecular complex due to the limitations in understanding the intermolecular association mechanism. The present work describes the equilibrium molecular geometries of ÎČ-cyclodextrin/propiconazole and ÎČ-cyclodextrin/protonated propiconazole, established by the AM1 and PM3 semi-empirical methods. The affinity between different parts of the guest molecule and the cyclodextrin cavity was studied considering that propiconazole possesses three residues able to be included into the host cavity through primary or secondary hydroxyl rims. The results have revealed that the most stable complex is formed when the azole residue of the propiconazole enters the cavity of the cyclodextrin through the narrow hydroxyl’s rim

    Development of Dextran-Coated Magnetic Nanoparticles Loaded with Protocatechuic Acid for Vascular Inflammation Therapy

    No full text
    Vascular inflammation plays a crucial role in the progression of various pathologies, including atherosclerosis (AS), and thus it has become an attractive therapeutic target. The protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, is endowed with anti-inflammatory activity, but its formulation into nanocarriers may increase its bioavailability. In this study, we developed and characterized dextran shell‒iron oxide core nanoparticles loaded with PCA (MNP-Dex/PCA) and assessed their cytotoxicity and anti-inflammatory potential on cells acting as key players in the onset and progression of AS, namely, endothelial cells (EC) and monocytes/macrophages. The results showed that MNP-Dex/PCA exert an anti-inflammatory activity at non-cytotoxic and therapeutically relevant concentrations of PCA (350 ÎŒM) as supported by the reduced levels of inflammatory molecules such as MCP-1, IL-1ÎČ, TNF-α, IL-6, and CCR2 in activated EC and M1-type macrophages and functional monocyte adhesion assay. The anti-inflammatory effect of MNP-Dex/PCA was associated with the reduction in the levels of ERK1/2 and p38-α mitogen-activated protein kinases (MAPKs) and NF-kB transcription factor. Our data support the further development of dextran shell-magnetic core nanoparticles as theranostic nanoparticles for guidance, imaging, and therapy of vascular inflammation using PCA or other anti-inflammatory compounds

    Special active sites on tailor-made Pt-Ge catalysts

    No full text
    SSCI-VIDE+CARE+CDSInternational audienceNon
    corecore