38 research outputs found

    Hepatitis E virus RNA replication polyprotein: taking structural biology seriously

    Get PDF
    International audienceHepatitis E virus (HEV) infects approximately 20 million individuals each year allaround the world, both in developing and industrialized countries. It leads to 40,000–70,000 deaths annually, especially in immunocompromised patients and pregnant women.Despite its recognized major public health issue status and zoonotic potential, no specifictreatment is available. Indeed, HEV life cycle characterization is hampered by the lackof efficient infectious cell culture systems or in vivo models. A better knowledge of HEVvirology is therefore needed. By providing descriptions of the three-dimensional structuresof viral proteins at atomic level, structural biology can be a powerful tool to understandviral replication and help develop specific antivirals. In this comment, we describe how bothexperimental and advanced computational structural biology help to decipher HEV virologyand make a case for heeding its lessons

    N-terminal protein modifications: Bringing back into play the ribosome.

    No full text
    International audienceN-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given

    De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation

    No full text
    International audienceHepatitis E virus (HEV), a major cause of acute viral hepatitis, is a single-stranded, positive-sense RNA virus. As such, it encodes a 1700-residue replication polyprotein pORF1 that directs synthesis of new viral RNA in infected cells. Here we report extensive modeling with AlphaFold2 of the full-length pORF1, and its production by in vitro translation. From this, we give a detailed update on the breakdown into domains of HEV pORF1. We also provide evidence that pORF1’s N-terminal domain is likely to oligomerize to form a dodecameric pore, homologously to what has been described for Chikungunya virus. Beyond providing accurate folds for its five domains, our work highlights that there is no canonical protease encoded in pORF1 and that flexibility in several functionally important regions rather than proteolytic processing may serve to regulate HEV RNA synthesis

    The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks

    No full text
    International audienceThe ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms

    The Structure of a Cyanobacterial Sucrose-Phosphatase Reveals the Sugar Tongs That Release Free Sucrose in the Cell

    No full text
    Sucrose-phosphatase (SPP) catalyzes the final step in the pathway of sucrose biosynthesis in both plants and cyanobacteria, and the SPPs from these two groups of organisms are closely related. We have crystallized the enzyme from the cyanobacterium Synechocystis sp PCC 6803 and determined its crystal structure alone and in complex with various ligands. The protein consists of a core domain containing the catalytic site and a smaller cap domain that contains a glucose binding site. Two flexible hinge loops link the two domains, forming a structure that resembles a pair of sugar tongs. The glucose binding site plays a major role in determining the enzyme's remarkable substrate specificity and is also important for its inhibition by sucrose and glucose. It is proposed that the catalytic reaction is initiated by nucleophilic attack on the substrate by Asp9 and involves formation of a covalent phospho-Asp9-enzyme intermediate. From modeling based on the SPP structure, we predict that the noncatalytic SPP-like domain of the Synechocystis sucrose-phosphate synthase could bind sucrose-6(F)-phosphate and propose that this domain might be involved in metabolite channeling between the last two enzymes in the pathway of sucrose synthesis

    A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase.

    No full text
    The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection

    In vitro translation of virally-encoded replication polyproteins to recapitulate polyprotein maturation processes

    No full text
    International audienceSingle-stranded, positive-sense RNA viruses encode essential replication polyproteins which are composed of several domains. They are usually subjected to finely regulated proteolytic maturation processes to generate cleavage intermediates and end-products. Both polyproteins and maturation products play multiple key roles that ultimately allow synthesis of viral genome progeny. Despite the importance of these proteins in the course of viral replication, their structural properties, including the conformational changes regulating their numerous functions, are poorly described at the structural level. This lack of information is mainly due to the extreme difficulty to express large, membrane-bound, multi-domain proteins with criteria suitable for structural biology methods. To tackle this challenge, we have used a wheat-germ cell-free expression system. We firstly establish that this approach allows to synthesize viral polyproteins encoded by two unrelated positive-sense RNA viruses, a human norovirus and a plant tymovirus. Then, we demonstrate that these polyproteins are fully functional and are spontaneously auto-cleaved by their active protease domain, giving rise to natural maturation products. Moreover, we show that introduction of point mutations in polyproteins allows to inhibit the proteolytic ma-turation process of each virus. This allowed us to express and partially purify the uncleaved full-length norovirus polyprotein and the tymoviral RNA-dependent RNA polymerase. Thus, this study provides a powerful tool to obtain soluble viral polyproteins and their maturation products in order to conduct challenging structural biology projects and therefore solve unanswered questions

    Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity

    No full text
    International audienceSingle-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multi-domain replication polyprotein. This polyprotein usually contains at least one protease whose primary function is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8 which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single point mutation in TYMV PRO/DUB aimed at improving Ub-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors
    corecore