145 research outputs found
Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean
Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania.
The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing ÎŽD values of (â629 ± 54) â° for water temperatures at (27 ± 3) °C and (â249 ± 88) â° below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered.
The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors
Optical tools for ocean monitoring and research
© 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Ocean Science 5 (2009): 661-684, doi: 10.5194/os-5-661-2009Requirements for understanding the relationships between ocean color and suspended and dissolved materials within the water column, and a rapidly emerging photonics and materials technology base for performing optical based analytical techniques have generated a diverse offering of commercial sensors and research prototypes that perform optical measurements in water. Through inversion, these tools are now being used to determine a diverse set of related biogeochemical and physical parameters. Techniques engaged include measurement of the solar radiance distribution, absorption, scattering, stimulated fluorescence, flow cytometry, and various spectroscopy methods. Selective membranes and other techniques for material isolation further enhance specificity, leading to sensors for measurement of dissolved oxygen, methane, carbon dioxide, common nutrients and a variety of other parameters. Scientists are using these measurements to infer information related to an increasing set of parameters and wide range of applications over relevant scales in space and time
Bottom and Suspended Sediment Backscatter Measurements in a FlumeâTowards Quantitative Bed and Water Column Properties
For health and impact studies of water systems, monitoring underwater environments is essential, for which multi-frequency single- and multibeam echosounders are commonly used state-of-the-art technologies. However, the current scarcity of sediment reference datasets of both bottom backscatter angular response and water column scattering hampers empirical data interpretation. Comprehensive reference data derived from measurements in a controlled environment should optimize the use of empirical backscatter data. To prepare for such innovative experiments, we conducted a feasibility experiment in the Delta Flume (Deltares, The Netherlands). Several configurations of sonar data were recorded of the flume floor and suspended sediment plumes. The results revealed that flume reverberation was sufficiently low and that the differential settling of fine-sand plumes in the water column was clearly detected. Following this successful feasibility test, future comprehensive experiments will feature multi-frequency multi-angle measurements on a variety of sediment types, additional scatterers and sediment plumes, resulting in reference datasets for an improved interpretation of underwater backscatter measurements for scientific observation and sustainable management
Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling
The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 ”atm. The mean (± SD) pCO2 and pHtot in August were 239±20 ”atm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pHtot in September were 1082±711 ”atm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 ”atm, 219±89 ÎŒatm and 1488±574 ”atm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats
Validation of sensor and instrumentation innovations
Validated prototypes of new and enhanced biogeochemical and biological sensors and instruments. Validation will be undertaken in the laboratory, in test scenarios, and by deployment in operational condition
Enhanced monitoring of life in the sea is a critical component of conservation management and sustainable economic growth
Marine biodiversity is a fundamental characteristic of our planet that depends on and influences climate, water quality, and many ocean state variables. It is also at the core of ecosystem services that can make or break economic development in any region. Our purpose is to highlight the need for marine biological observations to inform science and conservation management and to support the blue economy. We provide ten recommendations, applicable now, to measure and forecast biological Essential Ocean Variables (EOVs) as part of economic monitoring efforts. The UN Decade of Ocean Science for Sustainable Development (2021â2030) provides a timely opportunity to implement these recommendations to benefit humanity and enable the USD 3 trillion global ocean economy expected by 2030
Effectiveness and safety of opicapone in Parkinson's disease patients with motor fluctuations: The OPTIPARK open-label study
BACKGROUND: The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. METHODS: OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinsonâs disease and motor fluctuations were treated with opicapone 50âmg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinicianâs Global Impression of Change (CGI-C) after 3âmonths. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinsonâs Disease Rating Scale (UPDRS), Parkinsonâs Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). RESULTS: Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3âmonths of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3âmonths, respectively (full analysis set). At 6âmonths, for UK subgroup only (nâ=â95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3âmonths showed statistically significant improvements in activities of daily living during OFF (meanâ±âSD change from baseline: ââ3.0â±â4.6, pâ<â0.0001) and motor scores during ON (ââ4.6â±â8.1, pâ<â0.0001). The meanâ±âSD improvements of ââ3.4â±â12.8 points for PDQ-8 and -6.8â±â19.7 points for NMSS were statistically significant versus baseline (both pâ<â0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. CONCLUSIONS: Opicapone 50âmg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. TRIAL REGISTRATION: Registered in July 2016 at clinicaltrials.gov (NCT02847442)
- âŠ