201 research outputs found

    MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application

    Get PDF
    International audienceA new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have been applied to this standard setup to use different lines of sight near to the horizon as additional light sources (MAX - multi axis). Results from measurements at Ny-Ålesund (79° N, 12° E) are presented and interpreted with the full-spherical radiative transfer model SCIATRAN. In particular, measurements of the oxygen dimer O4 which has a known column and vertical distribution in the atmosphere are used to evaluate the sensitivity of the retrieval to parameters such as multiple scattering, solar azimuth, surface albedo and refraction in the atmosphere and also to validate the radiative transfer model. As a first application, measurements of NO2 emissions from a ship lying in Ny-Ålesund harbour are presented. The results of this study demonstrate the feasibility of long term UV/vis multi axis measurement that can be used to derive not only column amounts of different trace gases but also some information on the vertical location of these absorbers

    Ground-based measurements of tropospheric and stratospheric bromine monoxide above Nairobi (1° S, 36° E)

    No full text
    International audienceGround based observations of stratospheric and tropospheric bromine monoxide, BrO, from a multi axial differential optical absorption spectrometer, MAXDOAS, located at the UNEP/UNON site in Nairobi (1° S, 36° E) are presented for the year 2003. Differences in BrO slant column densities at 90° and 80° solar zenith angle retrieved from the zenith-sky measurements are used to study stratospheric BrO. They show only small variations with season, as expected for the small seasonality in stratospheric Bry and NO2 in this region. A pronounced diurnal variation can be observed, the average value for the morning being 1.3×1014 molecules/cm2 and for the evening 1.5×1014 molecules/cm2. The measurements are compared with simulations from a one-dimensional photochemical stacked box model which is coupled with a radiative transfer model to allow direct comparisons between the observations and the model calculations. In general the model reproduces the measurements very well. The differences in the absolute values are 15% for the evening and 20% for the morning which is within the limits of the combined uncertainties. Both seasonality and diurnal variation are well reproduced by the model. A sensitivity study shows that inclusion of the reaction BrONO2 + O(3P) significantly improves the agreement between model calculations and measurements, indicating an important role of this reaction in the stratosphere near to the equator. Tropospheric BrO columns and profile information is derived from the combined results obtained in the different viewing directions for the average over several clear days. The resulting tropospheric BrO columns are in the range of 4?7.5×1012 molecules/cm2 which is significant but lower than in previous studies at mid and high latitudes. The vertical distribution of the tropospheric BrO peaks at about 3 km indicating the absence of local sources at this high altitude site

    How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    Get PDF
    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells

    In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy

    Get PDF
    Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors

    Tumor Cell-Based Vaccine Generated With High Hydrostatic Pressure Synergizes With Radiotherapy by Generating a Favorable Anti-tumor Immune Microenvironment

    Get PDF
    Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have been demonstrated to be a promising immunotherapy for solid tumors. We focused on sole injection of tumor cells that were inactivated by HHP and their combination with local radiotherapy (RTx) for in vivo induction of anti-tumor immune responses. HHP-treatment of tumor cells resulted in pre-dominantly necrotic cells with degraded DNA. We confirmed that treatments at 200 MPa or higher completely inhibited the formation of tumor cell colonies in vitro. No tumor growth was seen in vivo after injection of HHP-treated tumor cells. Single vaccination with HHP-killed tumor cells combined with local RTx significantly retarded tumor growth and improved the survival as shown in B16-F10 and CT26 tumor models. In B16-F10 tumors that were irradiated with 2 × 5Gy and vaccinated once with HHP-killed tumor cells, the amount of natural killer (NK) cells, monocytes/macrophages, CD4+ T cells and NKT cells was significantly increased, while the amount of B cells was significantly decreased. In both models, a trend of increased CD8+ T cell infiltration was observed. Generally, in irradiated tumors high amounts of CD4+ and CD8+ T cells expressing PD-1 were found. We conclude that HHP generates inactivated tumor cells that can be used as a tumor vaccine. Moreover, we show for the first time that tumor cell-based vaccine acts synergistically with RTx to significantly retard tumor growth by generating a favorable anti-tumor immune microenvironment

    Prediction of airborne radiated noise from lightly loaded lubricated meshing gear teeth

    Get PDF
    This paper introduces a novel analytical method for determination of gear airborne noise under lightly loaded conditions, often promoting gear rattle of loose unengaged gear pairs. The system examined comprises a single gear pair, modelled through integrated contact tribology and inertial transient dynamics. Lubricant film thickness, structural vibration and airborne gear noise are predicted and correlated with experimental measurements undertaken in a semi-anechoic environment. Good agreement is noticed between the numerical predictions and the experimental measurements. The presented model is capable of estimating the airborne radiated gear noise levels and the dynamic behaviour of gear pairs under different operating conditions, with superimposed impulsive input speed harmonics

    F18-FDG PET/CT imaging early predicts pathologic complete response to induction chemoimmunotherapy of locally advanced head and neck cancer: preliminary single-center analysis of the checkrad-cd8 trial

    Get PDF
    Aim In the CheckRad-CD8 trial patients with locally advanced head and neck squamous cell cancer are treated with a single cycle of induction chemo-immunotherapy (ICIT). Patients with pathological complete response (pCR) in the re-biopsy enter radioimmunotherapy. Our goal was to study the value of F-18-FDG PET/CT in the prediction of pCR after induction therapy. Methods Patients treated within the CheckRad-CD8 trial that additionally received FDG- PET/CT imaging at the following two time points were included: 3–14 days before (pre-ICIT) and 21–28 days after (post-ICIT) receiving ICIT. Tracer uptake in primary tumors (PT) and suspicious cervical lymph nodes (LN +) was measured using different quantitative parameters on EANM Research Ltd (EARL) accredited PET reconstructions. In addition, mean FDG uptake levels in lymphatic and hematopoietic organs were examined. Percent decrease (Δ) in FDG uptake was calculated for all parameters. Biopsy of the PT post-ICIT acquired after FDG-PET/CT served as reference. The cohort was divided in patients with pCR and residual tumor (ReTu). Results Thirty-one patients were included. In ROC analysis, ΔSUVmax PT performed best (AUC = 0.89) in predicting pCR (n = 17), with a decline of at least 60% (sensitivity, 0.77; specificity, 0.93). Residual SUVmax PT post-ICIT performed best in predicting ReTu (n = 14), at a cutpoint of 6.0 (AUC = 0.91; sensitivity, 0.86; specificity, 0.88). Combining two quantitative parameters (ΔSUVmax ≥ 50% and SUVmax PT post-ICIT ≤ 6.0) conferred a sensitivity of 0.81 and a specificity of 0.93 for determining pCR. Background activity in lymphatic organs or uptake in suspected cervical lymph node metastases lacked significant predictive value. Conclusion FDG-PET/CT can identify patients with pCR after ICIT via residual FDG uptake levels in primary tumors and the related changes compared to baseline. FDG-uptake in LN + had no predictive value. Trial registry ClinicalTrials.gov identifier: NCT03426657

    Benchmarking ChatGPT-4 on ACR Radiation Oncology In-Training (TXIT) Exam and Red Journal Gray Zone Cases: Potentials and Challenges for AI-Assisted Medical Education and Decision Making in Radiation Oncology

    Full text link
    The potential of large language models in medicine for education and decision making purposes has been demonstrated as they achieve decent scores on medical exams such as the United States Medical Licensing Exam (USMLE) and the MedQA exam. In this work, we evaluate the performance of ChatGPT-4 in the specialized field of radiation oncology using the 38th American College of Radiology (ACR) radiation oncology in-training (TXIT) exam and the 2022 Red Journal gray zone cases. For the TXIT exam, ChatGPT-3.5 and ChatGPT-4 have achieved the scores of 63.65% and 74.57%, respectively, highlighting the advantage of the latest ChatGPT-4 model. Based on the TXIT exam, ChatGPT-4's strong and weak areas in radiation oncology are identified to some extent. Specifically, ChatGPT-4 demonstrates good knowledge of statistics, CNS & eye, pediatrics, biology, and physics but has limitations in bone & soft tissue and gynecology, as per the ACR knowledge domain. Regarding clinical care paths, ChatGPT-4 performs well in diagnosis, prognosis, and toxicity but lacks proficiency in topics related to brachytherapy and dosimetry, as well as in-depth questions from clinical trials. For the gray zone cases, ChatGPT-4 is able to suggest a personalized treatment approach to each case with high correctness and comprehensiveness. Most importantly, it provides novel treatment aspects for many cases, which are not suggested by any human experts. Both evaluations demonstrate the potential of ChatGPT-4 in medical education for the general public and cancer patients, as well as the potential to aid clinical decision-making, while acknowledging its limitations in certain domains. Because of the risk of hallucination, facts provided by ChatGPT always need to be verified
    corecore