220 research outputs found

    The Impact of Specific Viruses on Clinical Outcome in Children Presenting with Acute Heart Failure

    Get PDF
    Abstract: The presence and type of viral genomes have been suggested as the main etiology for inflammatory dilated cardiomyopathy. Information on the clinical implication of this finding in a large population of children is lacking. We evaluated the prevalence, type, and clinical impact of specific viral genomes in endomyocardial biopsies (EMB) collected between 2001 and 2013 among 63 children admitted to our hospital for acute heart failure (median age 2.8 years). Viral genome was searched by polymerase chain reaction (PCR). Patients underwent a complete two-dimensional echocardiographic examination at hospital admission and at discharge and were followed-up for 10 years. Twenty-seven adverse events (7 deaths and 20 cardiac transplantations) occurred during the follow-up. Viral genome was amplified in 19/63 biopsies (35%); PVB19 was the most commonly isolated virus. Presence of specific viral genome was associated with a significant recovery in ejection fraction, compared to patients without viral evidence (p < 0.05). In Cox-regression analysis, higher survival rate was related to virus-positive biopsies (p < 0.05). When comparing long-term prognosis among different viral groups, a trend towards better prognosis was observed in the presence of isolated Parvovirus B19 (PVB19) (p = 0.07). In our series, presence of a virus-positive EMB (mainly PVB19) was associated with improvement over time in cardiac function and better long-term prognosis

    Protective role of dehydroascorbate in rat liver ischemia-reperfusion injury

    Get PDF
    BACKGROUND: Oxidative stress plays an important role in liver ischemia/reperfusion (I/R) injury. Thus, enhancing the liver antioxidant capacity could be a promising therapeutic strategy. Ascorbate (AA) is considered the perfect antioxidant, but its therapeutic efficacy is greatly limited by its slow achievement of high intracellular levels. This might be circumvented by administering dehydroascorbate (DHA), which presents a several-fold greater uptake than AA, and undergoes rapid intracellular reduction to AA. Thus, our aim was to assess the protective role of DHA in liver I/R injury. MATERIALS AND METHODS: Wistar rats (200-300 g bw) were pretreated iv with different doses of AA or DHA 20 min before liver ischemia, followed by 6 h reperfusion. Liver damage was assessed by biochemical and morphological indices. RESULTS: DHA pretreatment induced a rapid increase in liver ascorbate levels, significantly higher than findings for AA, without any significant reduction in glutathione levels. Liver damage during I/R in controls showed significant increases in serum transaminases and hepatic thiobarbituric acid reactive substances with alterations of liver morphology. DHA administration induced a clear, significant protection against I/R injury, whereas liver damage was only moderately prevented by AA. CONCLUSIONS: DHA might represent a simple, effective therapeutic option to prevent liver damage associated with ischemia/reperfusion

    Possible added value of thyroglobulin antibody (TgAb) testing in the evaluation of thyroidal status of subjects with overweight or obesity

    Get PDF
    Purpose: An increase in serum TSH concentrations in the absence of thyroid disease, named isolated hyperthyrotropinemia, is frequently observed in subjects with obesity. It is directly associated with body mass index, and it is reversible following weight loss. Autoimmune hypothyroidism is frequently associated with obesity, it is usually progressive and needs replacement treatment with L-thyroxine. The aim of this study was to investigate the role of thyroglobulin antibodies (TgAb) to define the thyroidal status in subjects with overweight or obesity. Methods: This is a retrospective study including 749 consecutive adult patients with overweight or obesity. Of those, 76 were excluded from the analysis due to hyperthyroidism, previous thyroidectomy or radioiodine therapy for hyperthyroidism, hemiagenesis or drug-induced hypothyroidism. Serum thyrotropin (TSH), free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), TgAb and thyroperoxidase antibodies (TPOAb) were measured in all patients. Results: Out of 673 patients, 408 did not have thyroid disease. Among patients with thyroid disease (n = 265), 130 had nodular disease with no humoral signs of thyroid autoimmunity and 135 (20%) had autoimmune thyroiditis, defined by the presence of TPOAb and/or TgAb. The prevalence of hyperthyrotropinemia, either directly measured or presumed based on L-thyroxine treatment at the time of data collection, was 63.9% in patients with both TgAb and TPOAb, 47.1% in those with isolated positivity of TPOAb, 42.8% in patients with isolated positivity of TgAb, and 14.5% in those with no detectable TgAb or TPOAb. Conclusions: Our results confirm a high prevalence of autoimmune thyroiditis (20%) in patients with obesity. TgAb may be associated with hypothyroidism in the absence of TPOAb. TgAb measurement may turn helpful to unravel a proportion of subjects that may have or may develop primary hypothyroidism requiring specific substitutive treatment

    Serum gamma-glutamyltransferase fractions in Myotonic Dystrophy type I: Differences with healthy subjects and patients with liver disease.

    Get PDF
    Objectives: Elevation of serum gamma-glutamyltransferase (GGT), in absence of a clinically significant liver damage, is often found in Myotonic Dystrophy type-1 (DM1). In this study we investigated if a specific GGT fraction pattern is present in DM1. Designs and methods: We compared total and fractional GGT values (b-, m-, s-, f-GGT) among patients with DM1 or liver disease (LD) and healthy subjects (HS). Results: The increase of GGT in DM1 and LD, vs HS, was mainly due to s-GGT (median: 32.7; 66.7; and 7.9 U/L, respectively), and b-GGT (8.5; 18.9; and 2.1 U/L). The subset of DM1 patients matched with HS with corresponding serum GGT showed higher b-GGT (6.0 vs 4.2 U/L). Conclusions: DM1 patients with normal total GGT values showed an alteration of the production and release in the blood of GGT fractions. Since increased s-GGT is also found in LD, a sub-clinical liver damage likely occurs in DM1 subjects apparently free of liver disease

    The expression of platelet serotonin transporter (SERT) in human obesity

    Get PDF
    Serotonin (5-HT) is a well-known modulator of eating behavior. However, the molecular mechanisms linking its action to body weight balance have been only partially elucidated. Since platelets are a suitable peripheral model to study 5-HT transport, metabolism and release, we herein evaluated the expression of the platelet 5-HT re-uptake system (SERT) by [3H]-paroxetine binding assay. A cohort of 114 unrelated individuals (34 males, 80 females; age, mean +/- SD: 38.57 +/- 12.47 years) without major psychiatric disorders, was recruited following a naturalistic design regarding age or gender and classified accordingly to their body mass index (BMI). Subjects were divided into 5 groups: normal-weight (NW), overweight (OW) and grade I-III obese (OB) individuals. For gender analyses, data were transformed into [3H]-paroxetine density (Bmax)/BMI ratios to overcome both the disparity of women vs. men number and anthropometric differences between sexes.[3H]-paroxetine Bmax (SERT density, fmol/mg proteins) was reduced in platelet membranes of grade II (p &lt; 0.01) and III (p &lt; 0.001) obese subjects vs. controls and in overweight subjects (p &lt; 0.05) vs. grade III obese individuals. Considering all patients together, a strong negative correlation between Bmax and BMI (r = -0.449; P &lt; 0.0001) was demonstrated. Conversely, [3H]-paroxetine KD (dissociation constant, nM) did not differ among groups. No gender-related variation concerning Bmax/BMI ratios was observed in this cohort of subjects.The down-regulation of SERT in platelet membranes of severe human obesity (BMI &gt; 35 Kg/m2) confirms the involvement of 5-HT system in body weight gain. Moreover, this findings may help to elucidate those monoamine-endocrine networks acting on fat storage, adipocyte signaling and energy balance. Targeting 5-HT/5-HT-related markers will possibly uncover the existence of human obesity subtypes

    Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    Get PDF
    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases

    Self-tolerance in multiple sclerosis

    Get PDF
    During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56bright natural killer cells

    Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation

    Get PDF
    Stem cells derived from placental tissues are an attractive source of cells for regenerative medicine. Amniotic epithelial cells isolated from human amnion (hAECs) have desirable and competitive characteristics that make them stand out between other stem cells. They have the ability to differentiate toward all three germ layers, they are not tumorigenic and they have immunosuppressive properties. Although liver transplantation is the best way to treat acute and chronic hepatic failure patients, there are several obstacles. Recently, stem cells have been spotlighted as alternative source of hepatocytes because of their potential for hepatogenic differentiation. In this work, we aimed to study the proliferation and survival of the hAECs during their hepatic differentiation. We have also analyzed the changes in pluripotency and hepatic markers. We differentiated amniotic cells applying a specific hepatic differentiation (HD) protocol. We determined by qRT-PCR that hAECs express significant levels of SOX-2, OCT-4 and NANOG during at least 15 days in culture and these pluripotent markers diminish during HD. SSEA-4 expression was reduced during HD, measured by immunofluorescence. Morphological characteristics became more similar to hepatic ones in differentiated cells and representative hepatic markers significantly augmented their expression, measured by qRT-PCR and Western blot. Cells achieved a differentiation efficiency of 75%. We observed that HD induced proliferation and promoted survival of hAECs, during 30 days in culture, evaluated by 3H-thymidine incorporation and MTT assay. HD also promoted changes in hAECs cell cycle. Cyclin D1 expression increased, while p21 and p53 levels were reduced. Immunofluorescence analysis showed that Ki-67 expression was upregulated during HD. Finally, ERK 1/2 phosphorylation, which is intimately linked to proliferation and cell survival, augmented during all HD process and the inhibition of this signaling pathway affected not only proliferation but also differentiation. Our results suggest that HD promotes proliferation and survival of hAECs, providing important evidence about the mechanisms governing their hepatic differentiation. We bring new knowledge concerning some of the optimal transplantation conditions for these hepatic like cells.Fil: Maymo, Julieta Lorena. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Riedel, Rodrigo Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pérez Alcázar, Germán Antonio. Hospital Universitario Virgen Macarena;Fil: Magatti, Marta. Istituto Ospedaliero;Fil: Maskin, Bernardo. Hospital Nacional Professor Dr. Alejandro Posadas; ArgentinaFil: Dueñas, José Luis. Hospital Universitario Virgen Macarena;Fil: Parolini, Ornella. Istituto Ospedaliero;Fil: Sánchez-Margalet, Víctor. Hospital Universitario Virgen Macarena;Fil: Varone, Cecilia Laura. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin
    corecore