105 research outputs found
Viscoelastic Taylor-Couette instability of shear banded flow
We study numerically shear banded flow in planar and curved Couette geometries. Our aim is to capture two recent observations in shear banding systems of roll cells stacked in the vorticity direction, associated with an undulation of the interface between the bands. Depending on the degree of cell curvature and on the materialâs constitutive properties, we find either (i) an instability of the interface between the bands driven by a jump in second normal stress across it or (ii) a bulk viscoelastic Taylor-Couette instability in the high shear band driven by a large first normal stress within it. Both lead to roll cells and interfacial undulations but with a different signature in each case, thereby suggesting that the roll cells in each of the recent experiments are different in origin
Simple Model for the Deformation-Induced Relaxation of Glassy Polymers
Glassy polymers show âstrain hardeningâ: at constant extensional load, their flow first accelerates, then arrests. Recent experiments have found this to be accompanied by a striking and unexplained dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers, creating a nonfactorable interplay between aging and strain-induced rejuvenation. Under constant load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This slows the deformation enough for the segmental modes to revitrify, causing strain hardening
Alkaloids: Therapeutic Potential against Human Coronaviruses
Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2
Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
Motivated by the large strain shear of loose granular materials we introduced
a model which consists of consecutive optimization and restructuring steps
leading to a self organization of a density field. The extensive connections to
other models of statistical phyics are discussed. We investigate our model on a
hierarchical lattice which allows an exact asymptotic renormalization
treatment. A surprisingly close analogy is observed between the simulation
results on the regular and the hierarchical lattices. The dynamics is
characterized by the breakdown of ergodicity, by unusual system size effects in
the development of the average density as well as by the age distribution, the
latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also:
cond-mat/020920
Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models
Kinetically constrained models (KCMs) have been used to study and understand
the origin of glassy dynamics. Despite having trivial thermodynamic properties,
their dynamics slows down dramatically at low temperatures while displaying
dynamical heterogeneity as seen in glass forming supercooled liquids. This
dynamics has its origin in an ergodic-nonergodic first-order phase transition
between phases of distinct dynamical "activity". This is a "space-time"
transition as it corresponds to a singular change in ensembles of trajectories
of the dynamics rather than ensembles of configurations. Here we extend these
ideas to driven glassy systems by considering KCMs driven into non-equilibrium
steady states through non-conservative forces. By classifying trajectories
through their entropy production we prove that driven KCMs also display an
analogous first-order space-time transition between dynamical phases of finite
and vanishing entropy production. We also discuss how trajectories with rare
values of entropy production can be realized as typical trajectories of a
mapped system with modified forces
Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles
Using velocity profile measurements based on dynamic light scattering and
coupled to structural and rheological measurements in a Couette cell, we
present evidences for a shear-banding scenario in the shear flow of the onion
texture of a lyotropic lamellar phase. Time-averaged measurements clearly show
the presence of structural shear-banding in the vicinity of a shear-induced
transition, associated to the nucleation and growth of a highly sheared band in
the flow. Our experiments also reveal the presence of slip at the walls of the
Couette cell. Using a simple mechanical approach, we demonstrate that our data
confirms the classical assumption of the shear-banding picture, in which the
interface between bands lies at a given stress . We also outline
the presence of large temporal fluctuations of the flow field, which are the
subject of the second part of this paper [Salmon {\it et al.}, submitted to
Phys. Rev. E]
Sub-diffusion and localization in the one dimensional trap model
We study a one dimensional generalization of the exponential trap model using
both numerical simulations and analytical approximations. We obtain the
asymptotic shape of the average diffusion front in the sub-diffusive phase. Our
central result concerns the localization properties. We find the dynamical
participation ratios to be finite, but different from their equilibrium
counterparts. Therefore, the idea of a partial equilibrium within the limited
region of space explored by the walk is not exact, even for long times where
each site is visited a very large number of times. We discuss the physical
origin of this discrepancy, and characterize the full distribution of dynamical
weights. We also study two different two-time correlation functions, which
exhibit different aging properties: one is `sub-aging' whereas the other one
shows `full aging'; therefore two diverging time scales appear in this model.
We give intuitive arguments and simple analytical approximations that account
for these differences, and obtain new predictions for the asymptotic (short
time and long time) behaviour of the scaling functions. Finally, we discuss the
issue of multiple time scalings in this model.Comment: 20 pages, 15 figures, 1 reference adde
Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high risk, early breast cancer.
BACKGROUND: The randomized, double-blind OlympiA trial compared one year of the oral poly(adenosine diphosphate-ribose) polymerase) inhibitor, olaparib, to matching placebo as adjuvant therapy for patients with pathogenic or likely pathogenic variants in germline BRCA1 or BRCA2 (gBRCA1/2pv) and high-risk, human epidermal growth factor receptor 2 (HER2)-negative, early breast cancer (EBC). The first pre-specified interim analysis (IA) previously demonstrated statistically significant improvement in invasive-disease-free survival (IDFS) and distant-disease-free survival (DDFS). The olaparib-group had fewer deaths than the placebo-group, but the difference did not reach statistical significance for overall survival (OS). We now report the pre-specified second IA of OS with updates of IDFS, DDFS, and safety. PATIENTS AND METHODS: 1,836 patients were randomly assigned to olaparib or placebo following (neo)adjuvant chemotherapy (N)ACT, surgery, and radiation therapy if indicated. Endocrine therapy was given concurrently with study medication for hormone-receptor-positive-cancers. Statistical significance for OS at this IA required P<0.015. RESULTS: With median follow-up of 3.5 years, the second IA of OS demonstrated significant improvement in the olaparib-group relative to the placebo-group (HR, 0.68; 98.5% CI 0.47 to 0.97; P=0.009). Four-year OS was 89.8% in the olaparib-group and 86.4% in the placebo-group (Î 3.4%, 95% CI -0.1% to 6.8%). Four-year IDFS for olaparib-group versus placebo-group was 82.7% versus 75.4% (Î 7.3%, 95% CI 3.0% to 11.5%) and 4-year DDFS was 86.5% versus 79.1% (Î 7.4%, 95% CI 3.6% to 11.3%), respectively. Subset analyses for OS, IDFS, and DDFS demonstrated benefit across major subgroups. No new safety signals were identified including no new cases of acute myelogenous leukemia or myelodysplastic syndrome (AML/MDS). CONCLUSION: With 3.5 years of median follow-up, OlympiA demonstrates statistically significant improvement in OS with adjuvant olaparib compared with placebo for gBRCA1/2pv-associated EBC and maintained improvements in the previously reported, statistically significant endpoints of IDFS and DDFS with no new safety signals
Track D Social Science, Human Rights and Political Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
- âŚ