139 research outputs found

    Cultivating Perception: Phenomenological Encounters with Artworks

    Get PDF
    Phenomenally strong artworks have the potential to anchor us in reality and to cultivate our perception. For the most part, we barely notice the world around us, as we are too often elsewhere, texting, coordinating schedules, planning ahead, navigating what needs to be done. This is the level of our age that shapes the ways we encounter things and others. In such a world it is no wonder we no longer trust our senses. But as feminists have long argued, thinking grounded in embodied experience can be more open to difference; such embodied thinking helps us to resist the colonization of a singular, only seemingly neutral, perspective that closes down living potentialities

    This body of art: The singular plural of the feminine

    Get PDF
    I explore the possibility that the feminine, like art, can be thought in terms of Jean-Luc Nancy’s concept of the singular plural. In Les Muses, Nancy claims that art provides for the rethinking of a technë not ruled by instrumentality. Specifically, in rethinking aesthetics in terms of the debates laid out by Kant, Hegel and Heidegger, he resituates the ontological in terms of the specificity of the techniques of each particular artwork; each artwork establishes relations particular to its world or worlds. What is at stake in the singular plural is the multiplicity of relations that are lost in the unifying gestures that arise out of radical oppositions. I rethink the singular plural through a phenomenological encounter with Barb Hunt’s artwork, Antipersonnel, a collection of hand-knitted replicas of antipersonnel landmines

    On the multiphoton ionisation photoelectron spectra of phenol

    Get PDF
    The phenol molecule is a prototype for non-adiabatic dynamics and the excited-state photochemistry of biomolecules. In this article, we report a joint theoretical and experimental investigation on the resonance enhanced multiphoton ionisation photoelectron (REMPI) spectra of the two lowest ionisation bands of phenol. The focus is on the theoretical interpretation of the measured spectra using quantum dynamics simulations. These were performed by numerically solving the time-dependent Schrödinger equation using the multi-layer variant of the multiconfiguration time-dependent Hartree algorithm together with a vibronic coupling Hamiltonian model. The ionising laser pulse is modelled explicitly within the ionisation continuum model to simulate experimental femtosecond 1+1 REMPI photoelectron spectra. These measured spectra are sensitive to very short lived electronically excited states, providing a rigorous benchmark for our theoretical methods. The match between experiment and theory allows for an interpretation of the features of the spectra at different wavelengths and shows that there are features due to both 'direct' and 'indirect' ionisation, resulting from non-resonant and resonant excitation by the pump pulse

    Characterization of potential superspreader farms for bovine tuberculosis:A review

    Get PDF
    Background: Variation in host attributes that influence their contact rates and infectiousness can lead some individuals to make disproportionate contributions to the spread of infections. Understanding the roles of such ‘superspreaders’ can be crucial in deciding where to direct disease surveillance and controls to greatest effect. In the epidemiology of bovine tuberculosis (bTB) in Great Britain, it has been suggested that a minority of cattle farms or herds might make disproportionate contributions to the spread of Mycobacterium bovis, and hence might be considered ‘superspreader farms’.Objectives and Methods: We review the literature to identify the characteristics of farms that have the potential to contribute to exceptional values in the three main components of the farm reproductive number - Rf: contact rate, infectiousness and duration of infectiousness, and therefore might characterize potential superspreader farms for bovine tuberculosis in Great Britain.Results: Farms exhibit marked heterogeneity in contact rates arising from between-farm trading of cattle. A minority of farms act as trading hubs that greatly augment connections within cattle trading networks. Herd infectiousness might be increased by high within-herd transmission or the presence of supershedding individuals, or infectiousness might be prolonged due to undetected infections or by repeated local transmission, via wildlife or fomites.Conclusions: Targeting control methods on putative superspreader farms might yield disproportionate benefits in controlling endemic bovine tuberculosis in Great Britain. However, real-time identification of any such farms, and integration of controls with industry practices, present analytical, operational and policy challenges.<br/

    Single-crystal organometallic perovskite optical fibers

    Get PDF
    Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications

    Zero Threshold for Water Adsorption on MAPbBr3

    Get PDF
    Hybrid organic-inorganic perovskites (HOIPs) have shown great promise in a wide range of optoelectronic applications. However, this performance is inhibited by the sensitivity of HOIPs to various environmental factors, particularly high levels of relative humidity. This study uses X-ray photoelectron spectroscopy (XPS) to determine that there is essentially no threshold to water adsorption on the in situ cleaved MAPbBr3 (001) single crystal surface. Using scanning tunneling microscopy (STM), it shows that the initial surface restructuring upon exposure to water vapor occurs in isolated regions, which grow in area with increasing exposure, providing insight into the initial degradation mechanism of HOIPs. The electronic structure evolution of the surface was also monitored via ultraviolet photoemission spectroscopy (UPS), evidencing an increased bandgap state density following water vapor exposure, which is attributed to surface defect formation due to lattice swelling. This study will help to inform the surface engineering and designs of future perovskite-based optoelectronic devices

    The Effect of Conjugation on the Competition Between Internal Conversion and Electron Detachment: A Comparison Between Green Fluorescent and Red Kaede Protein Chromophores

    Get PDF
    Kaede, an analogue of green fluorescent protein (GFP), is a green-to-red photoconvertible fluorescent protein used as an in vivo ‘optical highlighter’ in bioimaging. The fluorescence quantum yield of the red Kaede protein is lower than that of GFP, suggesting that increasing the conjugation modifies the electronic relaxation pathway. Using a combination of anion photoelectron spectroscopy and electronic structure calculations, we find that the isolated red Kaede protein chromophore in the gas phase is deprotonated at the imidazole ring, unlike the GFP chromophore that is deprotonated at the phenol ring. We find evidence of an efficient electronic relaxation pathway from higher lying electronically excited states to the S1 state of the red Kaede chromophore that is not accessible in the GFP chromophore. Rapid autodetachment from high lying vibrational states of S1 is found to compete efficiently with internal conversion to the ground electronic state
    • …
    corecore