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A B S T R A C T   

We used logistic regression to investigate whether the risk of an Irish cattle herd undergoing a bovine tuber-
culosis (bTB) breakdown increased with the size of the Ingoing Contact Chain (ICC) of previous herd to herd 
cattle movements, in a sequence up to eight moves back from the most recent, direct, movement into the herd. 
We further examined whether taking into account the bTB test history of each herd in the chain would improve 
model fit. We found that measures of cattle movements directly into the herd were risk factors for subsequent 
bTB restrictions, and the number of herds that animals were coming from was the most important of these. 
However, in contrast to a previous study in Great Britain, the ICC herd count at steps more remote than direct 
movements into the herd did not result in better fitting models than restricting the count to direct movements. 
Restricting the ICC counts to herds which had previously or would in the future test positive for bTB resulted in 
improved model fits, but this was not the case if only the previous test status was considered. This suggests that in 
many cases bTB infected animals are moving out of herds before being identified through testing, and that risk- 
based trading approaches should not rely solely on the previous test history of source herds as a proxy for future 
risk. Model fit was also improved by the inclusion of variables measuring bTB history of the herd, bTB in 
neighbouring herds, herd size, herd type, the movement network measures “in strength” and “betweenness”, 
altitude, modelled badger abundance and county. Rainfall was not a good predictor. The most influential 
measures of bTB in nearby herds (a proxy for neighbourhood infection) were the proportion of herds with a 
history of bTB whose centroids were within 6 km, or whose boundaries were within 4 km, of the index herd. As 
well as informing national control and surveillance measures, our models can be used to identify areas where bTB 
rates are anomalously high, to prompt further investigation in these areas.   

1. Introduction 

Bovine tuberculosis (bTB) is endemic amongst the cattle population 
in the UK and The Republic of Ireland (henceforth “Ireland”), both of 
which have bTB eradication programmes; all herds are tested on an 
annual basis and, if they test positive, are put under “restriction”, i.e. 
prevented from selling or otherwise moving animals out to other herds, 
until further testing indicates they are likely to be clear of the disease 
(Sheridan et al., 2014; Allen et al., 2018; More, 2019). In both countries, 
mechanisms of transmission of infection to a herd are believed to include 
contact between cattle from other herds, both across farm boundaries 
and from movement between herds, contact with infected wildlife 

populations, especially badgers (Meles meles), and, possibly, exposure to 
the main causative organism, Mycobacterium bovis, residing in the wider 
environment (More and Good, 2015; Broughan et al., 2016). However, 
the relative contribution of each of these factors is poorly understood 
and may vary from location to location. 

Many studies have shown an association between inward cattle 
movements and bTB risk in Irish herds (Clegg et al., 2008, 2015; White 
et al., 2013; Byrne et al., 2020). One approach used to investigate this in 
Ireland (Clegg et al., 2008, 2015) has been to identify cases where herd 
breakdowns (the period during which herds test positive) could 
reasonably be attributed to the introduction of an infected animal from 
another herd; they looked for animals which tested positive at the initial 
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breakdown which had i) been introduced into the herd at some time 
after the most-recent, clear (i.e. negative) full-herd test and ii) had 
moved from a herd where subsequent herd-level testing suggested it 
may have been exposed to bTB. 

However, there are problems with this approach. On the one hand, 
‘potential for exposure’ is assumed to correspond to being infected, 
which is unlikely always to be the case, potentially leading to over-
estimation of risk. Conversely, the potential for residual infection 
through animals infected at the time of introduction but subsequently 
passing the first full-herd test (Wolfe et al., 2009; More, 2019) is not 
taken into account, potentially leading to an underestimate of risk. In 
Ireland, any herd that is not currently under restriction for bTB is typi-
cally tested only once per annum, using the Single Intradermal 
Comparative Cervical Tuberculin (SICCT) test, known as the “CITT” 
under Commission Delegated Regulation (EU) 2020/689, thus offering 
the potential for infected animals to move out of a herd before being 
discovered. Furthermore, depending on the stage of infection, a large 
proportion of infected cattle may test negative on the SICCT (Clegg et al., 
2011; Nuñez-Garcia et al., 2018) and indeed a significant number of bTB 
infected animals end their lives without ever having tested positive 
(Frankena et al., 2007; Conlan et al., 2012). 

In addition, infected animals that test positive may do so in a 
different herd to the one where they acquired infection, whether 
because they were a false test-negative in that herd or because they 
moved herds between becoming infected and being tested. In either 
case, it is often not possible to be confident of the direction of trans-
mission: whether an introduced animal passed the infection to animals 
already present within the herd, or vice versa. Once an animal does test 
positive it is sent to slaughter, so the effect of introducing a known 
infected animal to a naïve herd cannot be studied. As a result, it is 
usually not possible to be certain if, when, and from where, bTB was 
brought into a herd through cattle trading. 

Another approach, different to querying the movements and infec-
tion status of individual animals, is to examine the strength of associa-
tion between a herd’s bTB status and metrics of movement into it, such 
as the number of animals introduced over a certain period. Such ap-
proaches have proved informative both in Ireland (e.g. Byrne et al., 
2020) and elsewhere (e.g. Ribeiro-Lima et al., 2015; Palisson et al., 
2016; Pozo et al., 2019). A limitation of studies adopting such an 
approach has been that they have generally not taken into account the 
fact that some moves carry more risk than others because some selling 
herds are themselves more likely to host a bTB infection. To address this, 
Fielding et al. (2019), working on bTB transmission in Great Britain 
(GB), used a network-derived metric, the in-going contact chain (ICC), to 
take account not only of direct movement into a herd but also previous 
indirect movements through other herds. They further refined this 
approach by taking into account whether herds which occurred previ-
ously in the chain were located in areas identified as of high, medium or 
low risk for bTB and found that connections to more farms in the En-
gland High-Risk Area up to three movements away from the root farm 
increased the odds of a bTB incident, while connections with more herds 
in the England Low-Risk Area up to eight movements away decreased 
the odds. 

The aim of our study is to expand on the approach adopted by 
Fielding et al. (2019), henceforth referred to as “the GB study”, using a 
logistic regression model to examine how movement network metrics 
such as ICCs relate to herd-level bTB status in Ireland, and whether an 
improved model, more suited to Ireland, can be produced. As part of this 
process, we used three exogenous inputs not considered in the GB study: 
rainfall, altitude and, using the output produced by Byrne et al. (2014a), 
the estimated probability of the presence of a badger social group. To 
our knowledge ours is the first study to examine the relationship of any 
of these three drivers on herd-level bTB incidence across all of Ireland. 
We included rainfall and altitude as one might expect that survival of 
M. bovis in the farm environment might vary with these two factors. 
Furthermore, Jin et al. (2013) found a positive association between 

rainfall and bTB incidence across 2666 herds in Wicklow but did not test 
whether this relationship might be driven by a positive association be-
tween rainfall and altitude. We included the badger metric as badgers 
play a role in the epidemiology of bTB in Irish cattle (Ní Bhuachalla 
et al., 2015), and localized studies in Ireland have found associations 
between estimated measures of badger abundance and bTB in cattle 
(Olea-Popelka et al., 2006; Byrne et al., 2014b), although Madden et al. 
(2021) used a metric derived from the badger data in a grid based spatial 
analysis on bTB incidence across Ireland, finding no significant associ-
ation. Ours is also the first bTB study to examine differences in infection 
risk between three types of beef production common in Ireland; suckler 
(where beef calves are born into the herd), fattener (where animals are 
bought in to be fattened relatively late in their life, and then sent to 
slaughter), and stores (where animals are brought into the herd when 
young, reared for some time, and then sold on or sent to slaughter). 

2. Methods 

In the foregoing text we firstly describe the data used in the analysis 
in two sections: i) “data sources”, where we describe where each of the 
data sets came from and what processing we conducted on it to allow it 
to be used to calculate variables for each herd, and ii) “variables used in 
the analysis”, where we list each of the variables used as inputs to the 
models. 

2.1. Data sources  

• bTB data. The bTB test history of each herd in Ireland, comprising 
results of the SICCT, gamma interferon tests and slaughterhouse in-
spections, was obtained from the national database (the Animal 
Health Computer System (AHCS) of the Irish Department of Agri-
culture and the Marine (DAFM)). Using these data, we were able to 
calculate whether, and for what time, each Irish herd was restricted 
on the basis of a bTB case.  

• Herd locations and land parcels. DAFM’s Land Parcel Information 
System (LPIS), 2018, (Zimmermann et al., 2016) was used to delin-
eate the extent of the land occupied by each cattle herd. Following 
Tratalos et al. (2020), the Easting and Northing coordinates of the 
centroid (central point) for each herd were also derived from these 
data, with the exception of approximately 5% of herds which were 
not recorded in the LPIS system, which were mapped by randomly 
assigning a location within the Electoral Division they were located 
in. The mean size of Electoral Divisions is 20.6 km2. 

• AIM data. The births, movement records and end of year herd pro-
files for all Irish bovines during the period 2010–2019 were acquired 
from the DAFM’s Animal Identification and Movements (AIM) 
database. Analyses conducted on 2016 movement data from the 
same source are described in more detail in Tratalos et al. (2020) and 
McGrath et al. (2018). These data were used to estimate movement 
network variables as well as herd type and size.  

• Modelled badger abundance. We used the mapped output from 
Byrne et al. (2014a), which estimates probability of the occurrence of 
a badger social group (strictly a main sett), at 100 m resolution, as a 
proxy for badger abundance.  

• DEM data. Altitude at the centroid of the herd, using a digital 
elevation model (DEM) of Ireland. 

• Precipitation data. Mean annual precipitation, 2015–2018, in mil-
limeters, at 1 km grid resolution, were obtained by Met Éireann, the 
Irish Weather Forecast Service (https://www.met.ie/monthly-rainfa 
ll-and-temperature-grids/). 

2.2. Variables used in the analyses 

The data previously described in the data sources section were used 
to compute the following variables for the models. Italic font indicates 
variable names reported in the results, whereas bold font indicates data 
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sources described in the previous section. 

2.2.1. Dependent variable 
TB_18–19. The dependent variable was a binary measure of whether 

a herd was restricted during 2018 or 2019 based on the bTB data. 

2.2.2. Independent variables 
The following independent variables were used to model bTB risk. As 

outlined previously, these variables aimed to match those of the GB 
study, with the addition of those measuring rainfall, altitude and the 
probability of the presence of badgers.  

• TB_13-17 was, like the dependent variable, based on the bTB data 
and was a binary variable measuring whether the herd had previ-
ously been bTB restricted at any time between 2013 and 2017.  

• Herd size was calculated from the AIM data, measured as the mean of 
the number of animals in each herd on 1st January, 1st May and 1st 
September of each year, 2018–2019  

• Herd type was estimated for each year, 2018 and 2019, using a 
modified version of the methodology used by Brock et al. (2021). The 
AIM data was used to classify herds as Dairy, Suckler, Beef, Fattener, 
Stores, Mixed. Seasonal (N = 251) and Trader (Dealer) (N = 292) 
herds were excluded from the analysis. In cases where herd type 
differed between the two years, the type was selected randomly from 
one of them. Herd type was modelled as dummy (binary categorical) 
variables for each herd type, with Mixed, herds employing both dairy 
and beef production systems (Brock et al., 2021), as the reference 
category.  

• In strength, the number of individual bovine animals entering the 
herd. We calculated the mean value per annum, over the period 
2015–2017, based on the AIM data.  

• Trades in, a binary metric measuring whether any animals had 
entered the herd between 2015 and 2017, based on the AIM data.  

• Betweenness, which measures how often a herd is on the shortest path 
between each herd to herd combination in the trade network 
(Freeman, 1977); it was a directed measure, and we weighted each 
connection using the inverse of the number of animals involved in 
each trade, matching the methodology of the GB study. We calcu-
lated the mean value per annum, over the period 2015–2017, based 
on the AIM data.  

• Rainfall. Using the precipitation data, mean annual precipitation, 
2015–2018, in millimeters, was calculated at the herd centroid. In 
some cases, herd locations along the coast fell outside the coverage of 
the rainfall grid, and in these cases the nearest neighbouring value 
was used.  

• Altitude. Calculated at the location of the herd centroid from the DEM 
data.  

• Badger Metric. To measure the likelihood of the occurrence of a 
badger social group coming in contact with the herd we took the 
maximum value of the modelled badger abundance within the 
footprint of the herd’s land parcels as represented in LPIS.  

• ICCs. ICCs were calculated using the same approach as the GB study. 
For each month, January 2016-December 2017, each ICC was traced 
back up to 8 steps within the previous 12 months. For any given 
source herd, the minimum number of steps was calculated across all 
24 of these monthly ICCs. Using this approach, we obtained, for each 
study herd and each ICC step, a) the number of source herds in the 
ICC at this or fewer steps from the study herd, as well as b) the total 
number of herds, with a history of bTB between 2013 and 2017, at 
this or fewer steps from the study herd and c) the total number of 
herds, with a history of bTB between 2013 and 2019, at this or fewer 
steps from the study herd. We used the same approach to measure 
bTB history as used for the dependent variable (TB_18–19). These 
data were highly skewed, and we took account of this in the 
modelling process by testing the effect on the model fit of using 
untransformed, square root transformed and natural log + 1 

transformed data, as well as creating categorical variables for 
membership of each quartile in the frequency distribution (this last 
approach was the one used in the GB study). In the case of the log 
transformation, 1 was added to the raw data before transformation, 
to avoid calculating logs on zero values. In the foregoing text, these 
variables are named with reference to their transformation (Ut: Un-
transformed, Lg: Natural Log + 1, Qt: Quartiles, SR: Square root), the 
ICC step (1− 8) and whether the ICCs were calculated for all source 
herds (All) or just those with a history of TB across 2013–2017 
(TB_13–17) or 2013–2019 (TB_13–19); for example, 
ICC4_Ut_TB_13–19 represents the untransformed version of the ICC at 
step 4 restricted to herds with a history of TB between 2013 and 
2019.  

• Measures of proximity to infected herds. We used three alternative 
approaches to measure the proportion of nearby herds with a history 
of restriction for bTB during the period 2013–2017, each based on 
the assumption that any positive association between bTB infection 
in a herd and in each of its neighbours would be likely to decline with 
distance. 1) The first approach matched that of the GB study and used 
distance between herd coordinates to calculate the proportion of 
previously restricted herds within each of 5 straight line distance 
bands: 2 km, 4 km, 6 km, 8 km and 10 km. 2. The second method 
used these same four distance thresholds but used the LPIS data and 
calculated distance from farm boundary to farm boundary, with the 
addition of a metric calculated using neighbouring herds only 
(measured as <= 1 m apart). 3. Finally, we calculated a similar set of 
metrics with respect to the number of steps (i.e. herds) an infection 
would have to travel through in a land route from one herd to 
another, again using the < = 1 m criterion to designate neighbours; 
on the basis of this we calculated the minimum number of steps to a 
herd with a history of restriction. In the foregoing text, these vari-
ables are named with the prefix “Prox” followed by the method of 
measuring the effect of distance (XY method 1., LPIS: method 2, 
Steps: method 3) and then any distance threshold applied (0 km, 2 
km, 4 km, 8 km, 10 km); for example, Prox_XY_6km used the herd 
coordinates to measure distance, with a cut-off point of 6 Km.  

• County. The county location of each herd (n = 26) was obtained by 
reference to its eight character herd number, where the first letter 
identifies the county the herd is registered in (https://en.wikipedia. 
org/wiki/Counties_of_Ireland). 

2.3. Statistical analysis 

Employing the glm function in R 4.1.1 (https://www.r-project.org/), 
we used the dependent and independent variables described in the 
previous sections in multivariable logistic regressions, with herd re-
striction for bTB (TB_18–19) as the dependent variable. 

These regressions were calculated for a set of study herds. These 
study herds consisted of all Irish herds for which i) we had LPIS data, as 
some of our exogenous variables were calculated with reference to each 
study herd’s land parcels, and ii) had been in existence throughout the 
period 2013–2019, so that variables derived from data occurring across 
this period, such as TB_18–19 and TB_13–17, would not be affected by 
missing data. For the continuous variables selected in these models we 
estimated standardised odds ratios (OR) using the same method as the 
GB study – calculating the increase in likelihood in moving from the 
10th to 90th percentile of each variable. 

We examined whether multicollinearity was an issue in the models 
using Pearson correlation and through an examination of the Variance 
Inflation Factor (VIF) calculated by the “check_collinearity” function in 
the Performance Analytics Package of R (https://github.com/brave 
rock/PerformanceAnalytics; https://www.rdocumentation.org/packa 
ges/PerformanceAnalytics/versions/2.0.4/topics/PerformanceAnalyt 
ics-package). 

We used ArcMap 10.6 to create 5 km resolution grids of the mean 
value of the response residuals (real minus predicted values), to reveal 
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any spatial patterns in the performance of the models, and examined 
whether there was any spatial autocorrelation in these residuals using 
Moran’s I (Moran, 1950). 

2.3.1. The base model 
We first built a regression model using Herd size, Herd type, In 

strength, Trades in, Betweenness, Rainfall, Altitude, Badger Metric as inde-
pendent variables. We examined each of these in turn and removed any 
variable whose exclusion brought about an improvement in model fit, as 
indicated by a lower Akaike Information Criterion (AIC) (Stoica and 
Selen, 2004). We used this model as a basis to develop three further 
models, as described in the next two sections. 

2.3.2. Simple, history and proximity, and county models 
The measure of whether the herd had a history of bTB (TB_13–17) 

and the measures of proximity to infected herds might be expected to play 
roles similar to autoregressive variables – temporal in the case of the 
former and spatial in the latter. Therefore, although these variables 
represented the possibility of residual infection in the herd and spread of 
bTB from nearby herds, respectively, they might also be expected to act 
as proxies for a range of drivers which might have been imperfectly 
measured by other, existing, inputs to the models, and therefore sub-
sume some of any improvement in model fit which would otherwise be 
attributed to these other drivers. In view of this, we created a simple 
model, which consisted of the Base Model with the addition of an ICC 
variable, and a “History and Proximity Model” model, which addition-
ally included the TB_13–17 and measures of proximity to infected herds 
variables. Similarly, using the county location of a herd might reveal 
spatial patterns in the data due to the presence of missing variables but 
might also capture some of the explanatory power of other factors which 
are already taken account of in the other variables, but are imperfectly 
measured. We therefore created a third set of models using the same set 
of variables as used in the History and Proximity Model with the addi-
tion of the County variable, which we will refer to as the “Counties 
Model”. In the case of the measures of proximity to infected herds in the 
History and Proximity and Counties models we included only a single 
measure from amongst those we calculated, selected using AIC as a 
measure of best fit and parsimony. 

2.3.3. ICCs 
For all three models (the Simple Model, the History and Proximity 

Model, the Counties Model) we added the ICC variable that produced the 
best fit. As part of this process, we tested whether transforming the ICC 
data, using square root or log, or using quartiles as categorical variables 
would improve the fit. We then tested whether the removal of any of the 
other variables in the model would result in a reduction in the AIC. 
Finally, we tested whether adding any of the previously rejected vari-
ables could improve the fit of this model, again using AIC to find the 
most parsimonious model. 

As a sensitivity analysis, we reran the selected models replacing the 
ICC terms with equivalent ICC variables, calculated including only those 
source herds which were not direct neighbours (<= 25 m) of the sample 
herd. We also examined the effect on model fit of inclusion of each of the 
various transformations of these ICC variables, in the same way as 
described in the previous paragraph for the ICCs which included 
neighbouring herds. We conducted this sensitivity analysis because, 
after a bTB breakdown in the sample herd, neighbouring herds would 
typically be tested at an earlier date than required by the usual annual 
bTB testing interval, and we wanted to make sure that any relationships 
between bTB test status in the sample herd and future test status in the 
source herds found in its ICC was not influenced by this. 

3. Results 

3.1. The base model 

There were 90,257 study herds, of which 8285 were bTB restricted 
with reference to the dependent variable (TB_18–19). This compares to 
124,222 herds existing at any time between 2013 and 2019, as measured 
by at least one bTB test being recorded for the herd during that period. 

The only variable rejected from the base Model was Trades in, the 
binary measure of whether animals had entered the herd, as its inclusion 
alongside the other cattle movement variables resulted in an increase in 
the AIC. 

3.2. Simple, history and proximity, and counties models 

Outputs for the three final models (“Simple”, “History and Prox-
imity” and “Counties”) are shown in Table 1. Herd size, Altitude, Badger 
Metric, and In-strength all showed positive associations with TB_18–19 
(Odds Ratio > 1), whereas Betweenness showed negative associations. 
Rainfall showed a negative association in the Simple Model, a positive 
one in the Counties Model and was not included in the final History and 
Proximity Model, as it resulted in an increase in the AIC. Amongst the 
Herd type categories, relative to the reference category of Mixed, Dairy 
showed higher risk and Beef and, especially, Stores lower risk, with 
Fattener at a similar risk to the reference group. Summary statistics for 
the variables in these models are presented in Table 1 and 2 of the 
Supplementary Material. 

In the History and Proximity Model, the best fitting measure of 
proximity to infected herds was provided by the coordinates-based mea-
sure at 6 km (Prox_XY_6km in Table 1) whereas in the Counties Model it 
was from the measure based on a 4 km distance between herd bound-
aries: Prox_LPIS_4km. For both these models the variable for prior bTB in 
the herd, TB_13–17, brought about the greatest reduction in AIC of all 
the exogenous variables. Fig. 1 shows the effect on the AIC of 
substituting each of the measures of proximity to infected herds in the final 
selected models. 

In the Counties Model, County Monaghan carried the highest OR 
(2.7, 95% CI = 2.3–3.1) and the most notable difference between the 
spatial distribution of the residuals from the Counties Model and those 
from the History and Proximity Model was in this county (Table 1,  
Figs. 2 and 3). 

3.3. The contribution of ICC variables 

Introducing any of the ICC variables at Step 1 (ICC1), representing 
direct inward moves from other herds, in all cases brought about im-
provements in fit as measured by the AIC (Fig. 4 and Supplementary 
Material Fig. 1). For the Simple and History and Proximity models, 
relative to models with no ICC variable, improvements in fit were also 
brought about through the introduction of ICC variables at steps 2 − 8 
(ICC2-ICC8), but this was not always the case for the Counties Model 
(Fig. 4). ICC1 in all but one case produced a better fit than ICCs at 
remoter steps, the exception being “Qt_All” in the Simple and History 
and Proximity models. For all three models (Simple, History and Prox-
imity and Counties), the best fitting treatment of the ICC1 variables was 
SR_TB_13–19: a square root transformation, combined with taking into 
account test results for source herds for 2013–2019 (as opposed to not 
taking test history into account, or using only the years 2013–2017) 
(Fig. 4). 

Reintroduction of the previously rejected Trades In (the binary 
movement variable), in models including SR_TB_13–19, improved the 
AIC slightly in all three models, but for a negative coefficient; there was 
therefore no compelling reason to reintroduce it. It should also be noted 
that if both of the other movement related variables (ICC1_SR_TB_13–19 
and In-strength) were excluded, the coefficient for betweenness changed 
from negative to positive, although its inclusion resulted in a higher AIC. 
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3.4. Comparison of the three models 

The Counties Model had a better fit than the History and Proximity 
Model as measured by the AIC and the area under the ROC Curve and in 
turn the History and Proximity Model had a better fit than the Simple 
Model (Table 1). Both TB_13–17 and the measures of proximity to infected 
herds played a major contribution to this difference (Table 1). The 
standardized odds ratio for the ICC1_TB_13–19 variable was 1.72 in the 
Simple Model, 1.47 in the History and Proximity Model and 1.33 in the 
Counties Model, which was smaller than that for herd size (2.65, 1.99 
and 2.52) and of similar importance to that for the herd type categorical 
variables, which ranged from 0.37 (Stores) to 1.24 (Dairy) across the 

models (confidence intervals for all standardized odds ratios are given in 
Table 1). The other movement-related variables played a smaller role: 
the standardised odds ratio for Betweenness was 0.99 in all three models 
and that for In Strength ranged from 1.05 to 1.08. Standardised odds 
ratios for Altitude were 1.28 in the Simple Model and approximately 1.13 
in both History and Proximity and Counties models. For the badger 
abundance variable (Badger Metric), the standardised odds ratio was 
1.28 in the Simple Model and 1.11 in the History and Proximity and 
Counties models. By far the greatest variation for a single variable across 
the three models was for Rainfall, whose standardized odds ratio was 
0.88 in the Simple Model and 1.1 in the Counties Model, whereas was 
not selected in the History and Proximity Model. 

Table 1 
Logistic regressions for bTB in Irish cattle herds (N = 90,257). Three models are shown; in all three the dependent variable measures whether the herd was restricted 
during 2018–19. The History and Proximity and Counties models (b and c) include an exogenous variable for whether the herd has been restricted in the period 
2012–2017 (TB_13–17) and variables for the proportion of nearby herds which have been restricted in the period 2013–2017 (Prox_LPIS_4km and Prox_XY_6km); the 
Counties Model in addition has the county a herd was located in as an explanatory variable – odds ratios for individual counties are shown in Fig. 2. CL = 95% 
Confidence Limits. For continuous variables Odds Ratios and CLs have been standardised to represent the change in odds between 10th and 90th percentile. AIC: 
Akaike Information Criterion. Change in AIC shows the increase in the AIC of the model if the variable is removed from the final model. Individual variables are 
described fully in the Methods section.      

a) Simple Model  b) History and Proximity Model  c) Counties Model 

Parameter 10th 
pc. 

90th pc. Odds 
Ratio 

2.5% 
CL 

97.5% 
CL 

Change 
in AIC 

Odds 
Ratio 

2.5% 
CL 

97.5% 
CL 

Change 
in AIC 

Odds 
Ratio 

2.5% 
CL 

97.5% 
CL 

Change 
in AIC 

TB_13–17       3.355 3.187 3.533 2026.6 3.29 3.123 3.465 1924.7 
Prox_LPIS_4km 0.074 0.295         2.251 2.09 2.425 446.9 
Prox_XY_6km 0.058 0.255     2.021 1.909 2.14 558.6     
Herd size 8.5 168.5 2.649 2.415 2.907 440.5 1.992 1.815 2.186 216.2 2.524 2.285 2.789 342.4 
Herd type      489.3  338.4    375.7 
Mixed   Baseline    Baseline      
Beef   0.798 0.727 0.877  0.813 0.737 0.896  0.76 0.688 0.84  
Dairy   1.236 1.121 1.362  1.16 1.05 1.283  1.168 1.055 1.292  
Fattener   1.007 0.906 1.119  1.003 0.899 1.12  1.048 0.938 1.171  
Stores   0.368 0.321 0.422  0.414 0.36 0.476  0.413 0.359 0.476  
Badger Metric 0.427 0.839 1.272 1.181 1.369 39.1 1.11 1.029 1.198 5.3 1.109 1.025 1.199 4.6 
Altitude 25 165 1.281 1.21 1.357 68.3 1.127 1.064 1.194 14.4 1.136 1.055 1.224 9.2 
Rainfall 925 1579 0.88 0.824 0.94 12.7     1.101 0.993 1.222 1.3 
In Strength 0 48 1.041 1.018 1.065 10.9 1.046 1.02 1.072 13.9 1.081 1.055 1.108 42.4 
Betweenness 0 403,863 0.992 0.988 0.995 34.7 0.994 0.991 0.997 19.2 0.994 0.99 0.997 19.7 
ICC1_SR_TB_13–19 0 10 1.722 1.626 1.822 336.7 1.474 1.428 1.523 161.7 1.325 1.247 1.408 79.8 
County              668.8 
Null Deviance: 55,357.81 AIC: 50,749.5 

rea Under ROC: 0.706 
AIC: 47,597.7 
Area under ROC: 0.769 

AIC: 46,928.9 
Area under ROC: 0.78  

Fig. 1. AIC of models using three different 
measures of bTB history (restricted at any time 
during the period 2013–2017) in nearby herds 
(green, blue and orange lines) and for a model 
with no such measure (purple line). The colours 
of the green, blue and orange lines distinguish 
the way that distance was measured, which in 
the case of the blue and green lines represent the 
proportion of neighbours within 1 m (green line 
only), 2 km, 4 km, 6 km, 8 km and 10 km, with 
each distance threshold shown as a point on the 
line. Points on the blue line represents these 
distances as measured between herd centroids, 
those on the green line as measured by the 
shortest distance between land parcels belonging 
to a herd. The orange lines show AICs for models 
incorporating the neighbourhood effect as the 
number of herds an animal would have to travel 
through to reach a herd with a history of bTB 
and therefore represent a single value for each 
line. Similarly, the purple lines represent models 
with no neighbourhood measure and therefore 
the AIC does not change across the x-axis. Re-
sults for the History and Proximity and Counties 
models are shown separately; each of these 

models is described in detail in the methods section.   
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The VIF for the variables in the Simple and History and Proximity 
models showed that multicollinearity was not a major issue in either, 
with no VIF values higher than 3.1. However, this was not the case in the 
Counties Model, where five variables carried VIF values above 4 - County 
(108.5), ICC1_SR_TB_13–19 (28.6), In Strength (31.7), Altitude (20.8) and 
Herd Type (6.8) (Supplementary Material, Table 3). Amongst continuous 
variables found together in any of the models, highest R values were 
between In Strength and ICC1_SR_TB_13–19 (0.66), between Badger 
Metric and Herd Size (0.44) and between Badger Metric and Prox_L-
PIS_4km (0.27). Betweenness was only weakly correlated with the other 
movement variables: in strength (0.21) and ICC1_SR_TB_13–19 (0.16). 
Rainfall was negatively correlated with all other variables apart from 
altitude (r = 0.16), and mostly strongly with Prox_LPIS_4km (r = − 0.3). 
More detail on the VIF statistics can be found in Table 3 of the Supple-
mentary Material. 

Based on a simple visual comparison between the spatial distribu-
tions of the raw data and model fits (Fig. 3), the History and Proximity 
Model performed better than the Simple Model at predicting the spatial 
patterns in the data but both models broadly succeeded in predicting the 
higher probabilities of restriction which occur in certain areas toward of 
the South and East of Ireland, as well as The Burren (an upland area of 

karst geology identifiable as a bTB hotspot halfway up the west coast). 
Both models smoothed the local variation amongst grid cells seen in the 
real data. Adding County to the model (i.e. in the Counties Model) in 
some areas further reduced the degree to which spatial patterns were 
evident in the residuals (Fig. 3). However, Moran’s I showed that posi-
tive spatial autocorrelation remained in the residuals (correlation 
values: Simple = 0.041, History and Proximity = 0.031; County = 0.020; 
all three were highly significant (P < = 0.01)). 

The sensitivity analysis excluding neighbouring herds in the calcu-
lation of the ICCs produced similar results to those already reported 
(compare Table 1 with Supplementary Material Table 4 and Fig. 4 with 
Supplementary Material Fig. 2). 

4. Discussion 

The motivation for our study was to examine whether the calculation 
of ICCs could shed light on the epidemiology of bTB in Irish cattle herds. 
In contrast to the GB study we found that using information on the ICC 
chain at steps further back than the most recent one did not produce the 
best fitting models. It should be borne in mind however that the final 
model in the GB study incorporated measures of the location of source 

Fig. 2. Odds ratios for each county in Ireland derived from the Counties Model, a logistic regression model of bTB restriction amongst Irish cattle herds, 2018–2019. 
The reference county was Roscommon. Confidence intervals for the odds ratios are shown in a separate table (right). See. 
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Fig. 3. Rates of bTB restriction amongst Irish cattle herds in 2018 and2019 at 5 km resolution (g), alongside equivalent probabilities estimated by three logistic 
regression models (the Simple, History and Proximity and Counties models, a to c, described in the methods section) and their response residuals (observed minus 
predicted, d to f). 
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herds in the UK (in high, medium or low bTB areas) rather than their 
bTB history. Such an approach was not used in our study, as bTB 
infection is spread more evenly across Ireland than it is in GB. Instead we 
use the bTB test history of the herds during two periods – 2013–2017, 
which is the 5 years before the period measured by the dependent 

variable, and an extension of this, 2013–2019, also covering the period 
measured by the dependent variable. We found that taking into account 
testing history from 2013 to 2019 produced better fitting models than 
disregarding this information, but that restricting this information to the 
period 2013–17 only did so for the Simple Model. An implication of this 

Fig. 4. Effect on the model AIC of adding each of 4 
transformations (including untransformed) on 
three different criteria for including herds in the 
ICC calculation, up to 8 ICC steps removed from the 
receiving herd. Transformations included Untrans-
formed (Ut), Square Root (SR), Log (Lg), and 
Quartile (Qt). Criteria for including herds in the 
ICC calculation included All herds (“All”), only 
counting herds restricted for Tb between 2013 and 
2017 (“Tb13–17”), and ICC size only counting 
herds restricted for Tb between 2013 and 2019 
(Tb13–19). These data are also present in the 
Supplementary Material (Fig. 1). The horizontal 
black line represents the AIC if no ICC variable is 
included in the model.   
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is that we should not rely too heavily on past test results, as a measure of 
risk, in targeted surveillance or risk based trading. 

It should be noted, however, that our results do not show that herds 
previously infected with bTB pose no higher risk than those which have 
not, but rather that our estimation of risk needs to take into account 
those herds which have not previously tested positive but may be har-
bouring undetected disease, and indeed may go on to test positive after 
animals have moved from them. It should also be noted that when we 
incorporated test results from 2018 to 2019 into our estimation of bTB 
test history we were thereby using more years of data to estimate risk, 
and it was the increased sampling period, rather than, specifically, the 
inclusion of years after the movement data, that gave better fitting 
models. However, this seems implausible, as the five year period 
2013–2017 already seems long enough to capture bTB test results as a 
measure of likelihood of testing bTB positive at any given time. It would 
not be a suitable test of this to compare a measure for 2013–2017 with 
one for 2015–2019 (i.e. both a five year periods) as such a long period 
was chosen because moving animals out the herd is not allowed during 
bTB breakdowns and therefore a sufficient amount of time needs to 
elapse for a herd testing positive for bTB to at least go through their 
restriction period and start to sell potentially infected animals. bTB 
breakdowns and their associated movement restrictions during our 
study period had a mean duration of 179 days and a median of 147 days 
(IQR 136 – 189 days). The majority of these otherwise high-risk herds 
will have become truly bTB free during their period of restriction and 
will take some time to acquire it and subsequently test positive again. 

To arrive at a better approximation to the high, medium and low risk 
areas used by the GB study, further work could identify whether regional 
level risk scores could be calculated, for example by estimating the 
incidence of bTB within a certain radius of all source herds, or using the 
county-level bTB prevalence of the source herds. However, a problem 
with this approach, which may also apply to the results shown in the GB 
study, is that herds tend to trade with other herds relatively close by 
(Tratalos et al., 2020) and, given the high degree of spatial dependence 
found in this and other studies (e.g. Madden et al., 2021), are likely to 
show a tendency to be trading with other herds with similar levels of bTB 
to themselves, and therefore any association between high bTB preva-
lence in a given herd and in the locations of its trading partners may 
reflect this. 

Our results indicate that bTB in a herd is more strongly associated 
with the number of herds it takes animals from (ICC at step 1) than it is 
with the number of animals moving into it (In Strength; Table 1). 
Furthermore, In Trades, the measure of whether a farm purchased ani-
mals or not, a measure also used in the GB study, did not merit inclusion 
in our final models. The network variable selected for the final model, 
Betweenness, carried a negative coefficient, which was unexpected and 
was not the case in the GB study. However, the standardized odds ratio 
for betweenness was close to 1, and, when the other movement related 
variables (ICC1_SR_TB_13–19 and In Strength) were excluded, its coeffi-
cient was positive. In the context of our study, “betweenness” measures 
the proportion of shortest paths between other herds in the network that 
a herd belongs to, taking into account the number of animals involved in 
each movement. In the light of this, perhaps the negative coefficient is 
revealing that, for a given level of inward movement (measured by 
ICC1_SR_TB_13–19 and In Strength), herds which have a lot of 
throughput, connecting many other herds with each other through trade 
in many animals, are more likely to have animals in the herd for a short 
period of time and therefore may be less likely to acquire bTB. 

Our models generally support previous findings that bTB in Irish 
herds was related to herd type, herd size, previous history of bTB, bTB in 
neighbouring herds and cattle movements (White et al., 2013; Byrne 
et al., 2014b, 2020; Clegg et al., 2015; Broughan et al., 2016). 

Our study used a broader range of measurements than previous 
studies to identify the role of proximity in the spread of bTB from 
neighbouring herds. The GB study calculated proximity to neighbouring 
herds with a history of bTB by measuring the distances between the 

geographic coordinates for each herd. We also used this approach but 
complemented it with two alternative methods: measuring distances 
between herd boundaries and measuring the number of herds an 
infection would have to pass through between each herd. As these 
measures were closely related and therefore highly collinear, we fol-
lowed the GB study by retaining only the best fitting variable from 
amongst these groups in the final model. For the Simple and History and 
Proximity models we found that the best measure of the influence of 
proximity to infected herds was using a cutoff of 6 km with distance 
measured between the geographic coordinates of each herd, although 
this model performed only marginally better than the 4 km one 
measuring distances from herd boundary to herd boundary, which was 
in fact the best fitting variable in the Counties Model (Fig. 1). It should 
be noted that it would be expected that the distance band for the co-
ordinates based measure would be larger that measuring the distance 
between herd boundaries, as herd centroids will always be some dis-
tance from the boundary. Both metrics performed better than counting 
the number of herds an infection would have to cross (Fig. 1). This 
suggests that a more sophisticated approach to measuring the distance 
between herds, such as taking into account the configuration of land 
parcels occupied by each herd, may not be needed. It should be borne in 
mind here that many Irish farms consist of numerous parcels of land 
which are separated from one another, and even where this is not the 
case, the existence of a shared boundary between two farms does not 
necessarily mean that cattle on one would come into close proximity 
with those from the other, depending on how the land in each field is 
managed (e.g. for silage, crops, other livestock). Our proximity measures 
may also be picking up spatial autocorrelation explained by missing or 
poorly measured variables rather than over the fence transmission (or a 
combination of both phenomena). 

Similarly, the very high explanatory power of the previous history of 
bTB binary variable (TB_13–17, Table 1) in the History and Proximity 
and County models suggests that this variable may be picking up a 
mixture of residual infection and missing or poorly measured variables. 
It should be noted that our dependent variable (TB_18–19) measured 
whether a herd was restricted during 2018–19 and this criterion would 
include herds which were already restricted during the previous year 
(2017), which also partly explains the high explanatory power of 
TB_13–17. 

This study is the first to investigate the role of rainfall and altitude on 
bTB across Ireland. In contrast to Jin et al. (2015), Rainfall was not 
selected in the History and Proximity Model and carried non-significant 
negative coefficients when introduced into the final versions of the 
Counties and Simple models, and also in versions of these models where 
the altitude variable was excluded. There was, however, a positive as-
sociation between Altitude and bTB in a herd, possibly because of 
increased survival of the bTB bacillus in cooler environments or because 
of some aspect of the nutritional status or breed type of animals raised at 
higher elevations. 

Our herd type categories closely matched those of the GB study but 
with the addition of the Stores category and it was interesting that stores 
herds were associated with lower odds ratios than fattener herds, 
possibly because the former typically contain younger animals. Dairy 
herd type was associated with a high odds ratio and beef type with a low 
odds ratio, which matches results elsewhere, and the fact that this 
occurred even in models including movement and herd size based var-
iables suggests that this effect is due to more than the fact that dairy 
herds are typically larger, a characteristic which has previously been 
suggested as the underlying cause behind high rates of bTB in dairy 
herds (Conlan and Wood, 2016). The ORs for herd size were much lower 
than in the GB study, at around 2 (Table 1) versus 19.4 (CI: 17.1–22.1), 
which may be partly due to typically smaller herds in Ireland (compare 
90 percentile 168 versus 280 in the GB study). 

The Badger Metric was only moderately associated with bTB infec-
tion, with a standardized OR of 1.11 (1.03–1.20) in the Counties and the 
History and Proximity models and 1.27 (1.18–1.37) in the Simple Model 
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(Table 1). However, these data are themselves based on a model, and 
therefore may not correlate perfectly with the measure they are 
designed to estimate (the probability of a given grid square hosting a 
badger main sett), let alone precisely capture the relative likelihood of 
badgers transmitting bTB to cattle. Note that the variable we used rep-
resented the maximum value, at 100 m resolution, of the badger abun-
dance model output within land parcels hosting each herd. We used the 
maximum value, rather than the mean or median, as badgers occupy 
territory based around a main sett, and much of this territory may be 
suitable to them for other purposes (e.g. foraging) but not suitable for a 
main sett. 

Deer, especially Sika deer Cervus nippon, are thought likely to 
transmit bTB to cattle in some areas of Ireland, notably County Wicklow 
(Kelly et al., 2021), although they are mostly regarded as a spillover host 
in other areas. We did not include a measure of deer abundance in our 
models, mostly because little data exists on this, and there are no pub-
lished models of deer abundance. Comprehensive deer shooting records 
exist in Ireland (Kelly et al., 2021), but only at county level, and are 
arguably just as likely to represent the abundance of human hunters as 
deer. 

Possible further inputs to our model might include measures of the 
number of distinct batches of animals entering the herd (“contacts” in 
the terminology of Tratalos et al., 2020), which is a distinct measure 
from in degree and in strength. However, Tratalos et al. (2020) show 
that, in Ireland, the in-degree and the number of “in contacts” are highly 
positively correlated, and we therefore decided not to include a separate 
variable for the latter. We might also consider an investigation of 
interaction effects to see if these might address some of the collinearity 
issues indicated by the VIF analysis. However, these collinearity issues 
were only evident in the county model, and it is unclear to us what 
biologically justified interaction terms we could incorporate into our 
models to address this issue. 

The ORs for the exogenous variables were fairly consistent across the 
three types of models (the Simple, History and Proximity and Counties 
models) (Table 1). However, even with the inclusion of binary variables 
for each county (in the Counties Model) there remained areas of Ireland 
where the models tended to over or under predict (Fig. 3). This suggests 
that there may be other factors which are driving bTB infection in these 
areas. These might be farm management practices concerning hus-
bandry, biosecurity and the exclusion of badgers, the presence of bTB in 
deer and the configuration of habitat types such as woodland and 
pasture, which might bring about more or less interaction with wildlife. 
The zoning of areas for control of bTB in badgers through vaccination or 
culling many also explain some of these patterns. 

In this study we have built statistical models of the factors driving 
bTB prevalence in Ireland at a herd level. However, there is much 
further work which could be undertaken using our models as a starting 
point. We have touched on some of these areas elsewhere in our dis-
cussion. Such studies could include:  

1. Adaptation of the ICC methodology to include alternative measures 
of how risky each link in the chain is. This has been done in this study 
by flagging whether each herd in the chain has been under restriction 
for bTB but this might not be the best measure of true incidence of 
undetected bTB in the herd. Alternative measures might include 
calculating the average past and future bTB testing history of herds in 
the neighbourhood of each herd in the ICC and using that as a 
measure of the riskiness of the location of each herd or using a model 
to estimate the riskiness for each herd, based on similar inputs to 
those in this study and using the resulting risk scores as herd-level 
weights in the calculation of the ICC.  

2. Studies on the possible role of deer as vectors of bTB. Measures of 
deer abundance or prevalence of bTB in deer could be used as inputs 
into a model. Areas where the model does not work well could be 
investigated as possibly due to an unknown bTB host, such as deer.  

3. Smaller scale studies on effects of farm management practices such as 
differences in husbandry methods, biosecurity measures, and wild-
life management.  

4. In our study we used five of the six broad categories of herd type 
identified by Brock et al., 2021. However, within these categories 17 
sub types have been calculated (e.g. dairy herds using contract 
rearing are one of these subgroups, Brock et al., 2021). An exami-
nation of the relationship between the residuals from our model and 
the subtype of the herd might allow a better understanding of the 
riskiness of each of these 17 production types.  

5. Detailed investigation of locations and herds where the residuals 
from our model are particularly high (i.e. herds or areas identified by 
the model as low risk but with a relatively high incidence of bTB 
infection), to try to understand what might explain this. 

5. Conclusions 

The primary aim of our study was to investigate whether risk of bTB 
infection increased with the size of the ICC, and whether taking into 
account the bTB infection history of each herd in the chain would further 
improve prediction of the future bTB status of the receiving herd. We 
found that using information at steps more remote than direct move-
ments did not result in better fitting models. Measures of cattle move-
ments directly into the herd were risk factors for subsequent bTB 
restrictions, and the number of herds that animals were coming from 
was the most important of these. Using information on the previous and 
future bTB infection status of the sending herds resulted in improved 
model fits. Aside from factors found to be important in previous studies 
(such as herd size and herd type) we found that both altitude and 
modelled badger abundance also held some predictive power and 
facilitated a better understanding of the spatial pattern of infection risk 
from neighbouring herds. 

We believe our model can be used as a basis for the investigation of 
other exogenous factors such as the abundance of deer populations and 
also to identify areas where bTB rates are anomalously high, to prompt 
further investigation of local factors such as wildlife management, 
husbandry practices and biosecurity. 

Funding sources 

No specific funding was obtained for this research. The UCD Centre 
for Veterinary Epidemiology and Risk Analysis is funded by the National 
Department of Agriculture, Food and the Marine. 

Conflicts of interest 

None. 

Acknowledgements 

We would like to thank Eoin Ryan for suggesting that we undertake 
this study, Guy McGrath for help with obtaining much of the raw data, 
and both for useful comments and suggestions. Andrew Byrne kindly 
provided the data used for the Badger Metric. We would like to 
acknowledge staff of the Irish Government’s Department of Agriculture, 
Food and the Marine (DAFM) for providing the raw cattle movement 
data. Particularly helpful in this regard have been Suzanne Betts, Tony 
Hopkins, Pat Keena and Patrick Coote. CVERA is funded by DAFM. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.prevetmed.2022.105816. 

J.A. Tratalos et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.prevetmed.2022.105816


Preventive Veterinary Medicine 211 (2023) 105816

11

References 

Allen, A.R., Skuce, R.A., Byrne, A.W., 2018. Bovine tuberculosis in britain and ireland – a 
perfect storm? The confluence of potential ecological and epidemiological 
impediments to controlling a chronic infectious disease. Front. Vet. Sci. 5. https:// 
doi.org/10.3389/fvets.2018.00109. 

Brock, J., Lange, M., Tratalos, J.A., More, S.J., Graham, D.A., Guelbenzu-Gonzalo, M., 
Thulke, H.-H., 2021. Combining expert knowledge and machine‑learning to classify 
herd types in livestock systems. Nat. Sci. Rep. 11. https://doi.org/10.1038/s41598- 
021-82373-3. 

Broughan, J.M., Judge, J., Ely, E., Delahay, R.J., Wilson, G., Clifton-Hadley, R.S., 
Goodchild, A.V., Bishop, H., Parry, J.E., Downs, S.H., 2016. A review of risk factors 
for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 
144, 2899–2926. https://doi.org/10.1017/S095026881600131X. 

Byrne, A.W., Acevedo, P., Green, S., O’Keeffe, J., 2014a. Estimating badger social-group 
abundance in the Republic of Ireland using cross-validated species distribution 
modelling. Ecol. Indic. 43, 94–102. https://doi.org/10.1016/j.ecolind.2014.02.024. 

Byrne, A.W., White, P.W., McGrath, G., O’Keeffe, J., Martin, S.W., 2014b. Risk of 
tuberculosis cattle herd breakdowns in Ireland: effects of badger culling effort, 
density and historic large-scale interventions. Vet. Res. 45, 109. https://doi.org/ 
10.1186/s13567-014-0109-4. 

Byrne, A.W., Barret, D., Breslin, P., Madden, J.M., O’Keefe, J., Ryan, E., 2020. Bovine 
Tuberculosis (Mycobacterium bovis) Outbreak Duration in Cattle Herds in Ireland: A 
Retrospective Observational Study. Pathogens 9 (10). https://doi.org/10.3390/ 
pathogens9100815. 

Clegg, T.A., More, S.J., Higgins, I.M., Good, M., Blake, M., Williams, D.H., 2008. 
Potential infection-control benefit for Ireland from pre-movement testing of cattle 
for tuberculosis. Prev. Vet. Med. 84, 94–111. https://doi.org/10.1016/j. 
prevetmed.2007.11.004. 

Clegg, T.A., Duignan, A., Whelan, C., Gormley, E., Good, M., Clarke, J., Toft, N., More, S. 
J., 2011. Using latent class analysis to estimate the test characteristics of the 
γ-interferon test, the single intradermal comparative tuberculin test and a multiplex 
immunoassay under Irish conditions. Vet. Microbiol. 151 (1–2), 68–76. https://doi. 
org/10.1016/j.vetmic.2011.02.027. 

Clegg, T.A., Good, M., More, S.J., 2015. Future risk of bovine tuberculosis recurrence 
among higher risk herds in Ireland. Prev. Vet. Med. 118, 71–79. https://doi.org/ 
10.1016/j.prevetmed.2014.11.013. 

Conlan, A.J.K., Wood, J.L., 2016. Testing the dairy difference. Vet. J. 217, 134–135. 
https://doi.org/10.1016/j.tvjl.2016.07.017. 

Conlan, A.J.K., Wood, J.L., Clifton-Hadley, R.S., Karolemeas, K., McKinley, T.J., 
Pollock, E.B., Goodchild, A.V., Mitchell, A.P., Birch, C.P.D., 2012. Estimating the 
hidden burden of bovine tuberculosis in Great Britain. PloS Comput. Biol. 8, 
e1002730 https://doi.org/10.1371/journal.pcbi.1002730. 

Fielding, H.R., McKinley, T.J., Delahay, R.J., Silk, M.J., McDonald, R.A., 2019. Effects of 
trading networks on the risk of bovine tuberculosis incidents on cattle farms in Great 
Britain. R. Soc. Open Sci. 7. https://doi.org/10.1098/rsos.191806. 

Frankena, K., White, P., O’Keeffe, J., Costello, E., Martin, S.W., van Grevenhof, I., 
More, S.J., 2007. Quantification of the relative efficiency of factory surveillance in 
the disclosure of tuberculosis lesions in attested Irish cattle. Vet. Rec. 161, 679–684. 
https://doi.org/10.1136/vr.161.20.679. 

Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry 
40, 35–41 https://doi.org/3033543.  

Jin, R., Good, M., More, S.J., Sweeney, C., McGrath, G., Kelly, G.E., 2013. An association 
between rainfall and bovine TB in Wicklow, Ireland. Vet. Rec. 173, 452. https://doi. 
org/10.1136/vr.101777. 

Kelly, D.J., Mullen, E., Good, M., 2021. Bovine Tuberculosis: The Emergence of a New 
Wildlife Maintenance Host in Ireland. Front. Vet. Sci. 8. https://doi.org/10.3389/ 
fvets.2021.632525. 

Madden, J.M., McGrath, G., Sweeney, J., Murray, G., Tratalos, J.A., More, S.J., 2021. 
Spatio-temporal models of bovine tuberculosis in the Irish cattle population, 2012- 
2019. Spat. Spatio-Tempo Epidemiol. 39. 〈Ttps://doi.org/10.1016/j.sste.2021 
.100441〉. 

McGrath, G., Tratalos, J.A., More, S.J., 2018. A visual representation of cattle movement 
in Ireland during 2016. Ir. Vet. J. 71. https://doi.org/10.1186/s13620-018-0129-x. 

Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37 (1), 
17–604. https://doi.org/10.2307/2332142. JSTOR 2332142. 

More, S.J., 2019. Can bovine TB be eradicated from the Republic of Ireland? Could this 
be achieved by 2030. Ir. Vet. J. 72. https://doi.org/10.1186/s13620-019-0140-x. 

More, S.J., Good, M., 2015. Understanding and managing bTB risk: perspectives from 
Ireland. Vet. Microbiol. 176 (3–4), 209–218. https://doi.org/10.1016/j. 
vetmic.2015.01.026. 

Ní Bhuachalla, D., Corner, L.A.L., More, S.J., Gormley, E., 2015. The role of badgers in 
the epidemiology of Mycobacterium bovis infection (tuberculosis) in cattle in the 
United Kingdom and the Republic of Ireland: current perspectives on control 
strategies. Vet. Med.: Res. Rep. https://doi.org/10.2147/VMRR.S53643. 

Nuñez-Garcia, J., Downs, S.H., Parry, J.E., Abernethy, D.A., Broughan, J.M., Cameron, A. 
R., Cook, A.J., de la Rua-Domenech, R., Goodchild, A.V., Gunn, J., More, S.J., 
Rhodes, S., Rolfe, S., Sharp, M., Upton, P.A., Vordermeier, M.H., Watson, E., 
Welsh, M., Whelan, A.O., Woolliams, J.A., Clifton-Hadley, R.S., Greiner, M., 2018. 
Meta-analyses of the sensitivity and specificity of ante-mortem and post-mortem 
diagnostic tests for bovine tuberculosis in the UK and Ireland. Prev. Vet. Med. 153, 
94–107. https://doi.org/10.1016/j.prevetmed.2017.02.017. 

Olea-Popelka, F.J., Phelan, J., White, P., McGrath, Collins, J.D., O’ Keeffe, J.J., 
Duggan, M.G., Collins, D.M., Kelton, D.F., Berke, O., More, S.J., Martin, S.W., 2006. 
Quantifying badger exposure and the risk of bovine tuberculosis for cattle herds in 
County Kilkenny, Ireland. Prev. Vet. Med. 75 (1–2), 34–46. https://doi.org/ 
10.1016/j.prevetmed.2006.01.014. 

Palisson, A., Courcoul, A., Durand, B., 2016. Role of cattle movements in bovine 
tuberculosis spread in France between 2005 and 2014. PLoS ONE 11 (3), e0152578. 
https://doi.org/10.1371/journal.pone.0152578. 

Pozo, P., VanderWaal, K., Grau, A., de la Cruz, M.L., Nacar, J., Bezos, J., Perez, A., 
Minguez, O., Alvarez, J., 2019. Analysis of the cattle movement network and its 
association with the risk of bovine tuberculosis at the farm level in Castilla y Leon, 
Spain. Transbound. Emerg. Dis. 66 (1), 327–340. https://doi.org/10.1111/ 
tbed.13025. 

Ribeiro-Lima, J., Enns, E.A., Thompson, B., Craft, M.E., Wells, S.J., 2015. From network 
analysis to risk analysis—An approach to risk-based surveillance for bovine 
tuberculosis in Minnesota, US. Prev. Vet. Med. 118 (4), 328–340. https://doi.org/ 
10.1016/j.prevetmed.2014.12.007. 

Sheridan, M., Good, M., More, S.J., Gormley, E., 2014. The impact of an integrated 
wildlife and bovine tuberculosis eradication program in Ireland. In: Thoen, C.O., 
Steele, J.H. (Eds.), Zoonotic Tuberculosis: Mycobacterium bovis and other 
Pathogenic Mycobacteria. Wiley-Blackwell, Iowa, USA, pp. 323–340. ISBN: 978-1- 
118-47429-7.  

Stoica, P., Selen, Y., 2004. Model-order selection: a review of information criterion rules. 
IEEE Signal Process. Mag. 36–47. https://doi.org/10.1109/MSP.2004.1311138. 

Tratalos, J.A., Madden, J.M., McGrath, G., Graham, D.A., Collins, Á.B., More, S.J., 2020. 
Spatial and network characteristics of Irish cattle movements. Prev. Vet. Med. 183. 
https://doi.org/10.1016/j.prevetmed.2020.105095. 

White, P.W., Martin, S.W., De Jong, M.C.M., O’Keeffe, J.J., More, S.J., Frankena, K., 
2013. The importance of neighbourhood in the persistence of bovine tuberculosis in 
Irish cattle herds. Prev. Vet. Med. 110, 346–355. https://doi.org/10.1016/j. 
prevetmed.2013.02.012. 

Wolfe, D.M., Berke, O., More, S.J., Kelton, D.F., White, P., O’Keeffe, J.J., Martin, S.W., 
2009. The risk of a positive test for bovine tuberculosis in cattle purchased from 
herds with and without a recent history of bovine tuberculosis in Ireland. Prev. Vet. 
Med. 92, 99–105. https://doi.org/10.1016/j.prevetmed.2009.07.012. 

Zimmermann, J., Fealy, R.M., Lydon, K., Mockley, E.M., O’Brien, P., Packham, I., 
Smith, G., Green, S., 2016. The Irish Land-Parcels Identification System (LPIS)– 
Experiences in ongoing and recent environmental research and land cover mapping. 
Biol. Environ.: Proc. R. Ir. Acad. 116B, 53–62. https://doi.org/10.1353/ 
bae.2016.0025. 

J.A. Tratalos et al.                                                                                                                                                                                                                              

https://doi.org/10.3389/fvets.2018.00109
https://doi.org/10.3389/fvets.2018.00109
https://doi.org/10.1038/s41598-021-82373-3
https://doi.org/10.1038/s41598-021-82373-3
https://doi.org/10.1017/S095026881600131X
https://doi.org/10.1016/j.ecolind.2014.02.024
https://doi.org/10.1186/s13567-014-0109-4
https://doi.org/10.1186/s13567-014-0109-4
https://doi.org/10.3390/pathogens9100815
https://doi.org/10.3390/pathogens9100815
https://doi.org/10.1016/j.prevetmed.2007.11.004
https://doi.org/10.1016/j.prevetmed.2007.11.004
https://doi.org/10.1016/j.vetmic.2011.02.027
https://doi.org/10.1016/j.vetmic.2011.02.027
https://doi.org/10.1016/j.prevetmed.2014.11.013
https://doi.org/10.1016/j.prevetmed.2014.11.013
https://doi.org/10.1016/j.tvjl.2016.07.017
https://doi.org/10.1371/journal.pcbi.1002730
https://doi.org/10.1098/rsos.191806
https://doi.org/10.1136/vr.161.20.679
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref14
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref14
https://doi.org/10.1136/vr.101777
https://doi.org/10.1136/vr.101777
https://doi.org/10.3389/fvets.2021.632525
https://doi.org/10.3389/fvets.2021.632525
http://Ttps://doi.org/10.1016/j.sste.2021.100441
http://Ttps://doi.org/10.1016/j.sste.2021.100441
https://doi.org/10.1186/s13620-018-0129-x
https://doi.org/10.2307/2332142. JSTOR 2332142
https://doi.org/10.1186/s13620-019-0140-x
https://doi.org/10.1016/j.vetmic.2015.01.026
https://doi.org/10.1016/j.vetmic.2015.01.026
https://doi.org/10.2147/VMRR.S53643
https://doi.org/10.1016/j.prevetmed.2017.02.017
https://doi.org/10.1016/j.prevetmed.2006.01.014
https://doi.org/10.1016/j.prevetmed.2006.01.014
https://doi.org/10.1371/journal.pone.0152578
https://doi.org/10.1111/tbed.13025
https://doi.org/10.1111/tbed.13025
https://doi.org/10.1016/j.prevetmed.2014.12.007
https://doi.org/10.1016/j.prevetmed.2014.12.007
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref28
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref28
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref28
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref28
http://refhub.elsevier.com/S0167-5877(22)00250-1/sbref28
https://doi.org/10.1109/MSP.2004.1311138
https://doi.org/10.1016/j.prevetmed.2020.105095
https://doi.org/10.1016/j.prevetmed.2013.02.012
https://doi.org/10.1016/j.prevetmed.2013.02.012
https://doi.org/10.1016/j.prevetmed.2009.07.012
https://doi.org/10.1353/bae.2016.0025
https://doi.org/10.1353/bae.2016.0025

	Can Ingoing Contact Chains and other cattle movement network metrics help predict herd-level bovine tuberculosis in Irish c ...
	1 Introduction
	2 Methods
	2.1 Data sources
	2.2 Variables used in the analyses
	2.2.1 Dependent variable
	2.2.2 Independent variables

	2.3 Statistical analysis
	2.3.1 The base model
	2.3.2 Simple, history and proximity, and county models
	2.3.3 ICCs


	3 Results
	3.1 The base model
	3.2 Simple, history and proximity, and counties models
	3.3 The contribution of ICC variables
	3.4 Comparison of the three models

	4 Discussion
	5 Conclusions
	Funding sources
	Conflicts of interest
	Acknowledgements
	Appendix A Supporting information
	References


