21 research outputs found
Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.</p
Crown Ether Active Template Synthesis of Rotaxanes**
Rotaxanes are interlocked molecules that consist of a macrocycle encircling a stoppered thread. The ability to control relative component positions makes rotaxanes ideal building blocks for constructing functional and responsive molecular machines. Despite the potential of rotaxanes, their challenging synthesis limits their application. One approach to construct rotaxanes is to use an active template synthesis, where a reaction that forms the thread is accelerated in the cavity of a macrocycle. An emerging method of active template synthesis that exploits the ability of crown ether macrocycles to accelerate simple organic reactions is discussed herein. Crown ether active template synthesis (CEATS) permits the rapid and simple synthesis of rotaxanes containing a wide range of functionality. Integrating rotaxane formation with chemical reaction networks has permitted the construction of molecular machines. The simplification of rotaxane synthesis will facilitate their widespread study and application
Harnessing Cytosine for Tunable Nanoparticle Self-Assembly Behavior Using Orthogonal Stimuli
Nucleobases control the assembly of DNA, RNA, etc. due to hydrogen bond complementarity. By combining these unique molecules with state-of-the-art synthetic polymers, it is possible to form nanoparticles whose self-assembly behavior could be altered under orthogonal stimuli (pH and temperature). Herein, we report the synthesis of cytosine-containing nanoparticles via aqueous reversible addition-fragmentation chain transfer polymerization-induced self-assembly. A poly(N-acryloylmorpholine) macromolecular chain transfer agent (mCTA) was chain-extended with cytosine acrylamide, and a morphological phase diagram was constructed. By exploiting the ability of cytosine to form dimers via hydrogen bonding, the self-assembly behavior of cytosine-containing polymers was altered when performed under acidic conditions. Under these conditions, stable nanoparticles could be formed at longer polymer chain lengths. Furthermore, the resulting nanoparticles displayed different morphologies compared to those at pH 7. Additionally, particle stability post-assembly could be controlled by varying pH and temperature. Finally, small-angle X-ray scattering was performed to probe their dynamic behavior under thermal cycling
Cultural distance, mindfulness and passive xenophobia: Using Integrated Threat Theory to explore home higher education students' perspectives on 'internationalisation at home'
This paper addresses the question of interaction between home and international students using qualitative data from 100 home students at two 'teaching intensive' universities in the southwest of England. Stephan and Stephan's Integrated Threat Theory is used to analyse the data, finding evidence for all four types of threat that they predict when outgroups interact. It is found that home students perceive threats to their academic success and group identity from the presence of international students on the campus and in the classroom. These are linked to anxieties around 'mindful' forms of interaction and a taboo around the discussion of difference, leading to a 'passive xenophobia' for the majority. The paper concludes that Integrated Threat Theory is a useful tool in critiquing the 'internationalisation at home' agenda, making suggestions for policies and practices that may alleviate perceived threats, thereby improving the quality and outcomes of intercultural interaction. © 2010 British Educational Research Association
A catalysis-driven artificial molecular pump.
From PubMed via Jisc Publications RouterHistory: received 2021-02-23, accepted 2021-04-22Publication status: ppublishAll biological pumps are autonomous catalysts; they maintain the out-of-equilibrium conditions of the cell by harnessing the energy released from their catalytic decomposition of a chemical fuel . A number of artificial molecular pumps have been reported to date , but they are all either fuelled by light or require repetitive sequential additions of reagents or varying of an electric potential during each cycle to operate . Here we describe an autonomous chemically fuelled information ratchet that in the presence of fuel continuously pumps crown ether macrocycles from bulk solution onto a molecular axle without the need for further intervention. The mechanism uses the position of a crown ether on an axle both to promote barrier attachment behind it upon threading and to suppress subsequent barrier removal until the ring has migrated to a catchment region. Tuning the dynamics of both processes enables the molecular machine to pump macrocycles continuously from their lowest energy state in bulk solution to a higher energy state on the axle. The ratchet action is experimentally demonstrated by the progressive pumping of up to three macrocycles onto the axle from bulk solution under conditions where barrier formation and removal occur continuously. The out-of-equilibrium [n]rotaxanes (characterized with n up to 4) are maintained for as long as unreacted fuel is present, after which the rings slowly de-thread. The use of catalysis to drive artificial molecular pumps opens up new opportunities, insights and research directions at the interface of catalysis and molecular machinery
Triggered Polymersome Fusion
The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology
Controlled node growth on the surface of polymersomes†
Incorporating nucleobases into synthetic polymers has proven to be a versatile method for controlling self-assembly. The formation of strong directional hydrogen bonds between complementary nucleobases provides a driving force that permits access to complex particle morphologies. Here, nucleobase pairing was used to direct the formation and lengthening of nodes on the outer surface of vesicles formed from polymers (polymersomes) functionalised with adenine in their membrane-forming domains. Insertion of a self-assembling short diblock copolymer containing thymine into the polymersome membranes caused an increase in steric crowding at the hydrophilic/hydrophobic interface, which was relieved by initial node formation and subsequent growth. Nano-objects were imaged by (cryo-)TEM, which permitted quantification of node coverage and length. The ability to control node growth on the surface of polymersomes provides a new platform to develop higher-order nanomaterials with tailorable properties
Transamidation-Driven Molecular Pumps
[Image: see text] We report a new class of synthetic molecular pumps that use a stepwise information ratchet mechanism to achieve the kinetic gating required to sequester their macrocyclic substrates from bulk solution. Threading occurs as a result of active template reactions between the pump terminus amine and an acyl electrophile, whereby the bond-forming reaction is accelerated through the cavity of a crown ether. Carboxylation of the resulting amide results in displacement of the ring to the collection region of the thread. Conversion of the carbamate to a phenolic ester provides an intermediate rotaxane suitable for further pumping cycles. In this way rings can be ratcheted onto a thread from one or both ends of appropriately designed molecular pumps. Each pumping cycle results in one additional ring being added to the thread per terminus acyl group. The absence of pseudorotaxane states ensures that no dethreading of intermediates occurs during the pump operation. This facilitates the loading of different macrocycles in any chosen sequence, illustrated by the pump-mediated synthesis of a [4]rotaxane containing three different macrocycles as a single sequence isomer. A [5]rotaxane synthesized using a dual-opening transamidation pump was structurally characterized by single-crystal X-ray diffraction, revealing a series of stabilizing CH···O interactions between the crown ethers and the polyethylene glycol catchment region of the thread
Knotting matters: orderly molecular entanglements
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things
Dissipative Catalysis with a Molecular Machine
We report on catalysis by a fuel-induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid), which is itself decomposed by the machine and/or the presence of additional base. The ON-state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON-state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, with each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components