969 research outputs found

    Fear information and social phobic beliefs in children: a prospective paradigm and preliminary results

    Get PDF
    This paper presents a first attempt to develop a prospective paradigm to test Rachman’s (Behav. Res. Ther. 15 (1977) 375) theory of fear acquisition for social fears. Following the prospective paradigm for animal fears developed by Field et al. (Behav. Res. Ther. 39 (2001) 1259) an attempt is made to adapt this paradigm to look at the effect of fear information in the development of social fears. A large group of normal children (N=135)who were at an age (10–13 years) at which social concerns are most pertinent were tested using this paradigm. They were given positive, negative or neutral information about three social situations: public speaking, eating in public, and meeting a new group of children. Children’s fear beliefs were measured before and after the information was given and the information was given by a teacher, a same age peer or no information was given (a control). The results indicate that although information can change social fear beliefs it is dependent upon the type of social activity and who provides the information. The implications of these initial results for our understanding of both the role of fear information in the development of social fear beliefs, and the limitations of this current paradigm are discussed

    Axial vector form factor of nucleons in a light-cone diquark model

    Get PDF
    The nucleon axial vector form factor is investigated in a light-cone quark spectator diquark model, in which Melosh rotations are applied to both the quark and vector diquark. It is found that this model gives a very good description of available experimental data and the results have very little dependence on the parameters of the model. The relation between the nucleon axial constant and the anomalous magnetic moment of nucleons is also discussed.Comment: 8 pages, Revtex4, 1 figure, version to be published in Phys. Rev.

    Unusual morphologies and the occurrence of pseudomorphs after ikaite (CaCO3•6H2O) in fast growing, hyperalkaline speleothem

    Get PDF
    Unusual speleothem, associated with hyperalkaline (pH>12) groundwaters have formed within a shallow, abandoned railway tunnel at Peak Dale, Derbyshire, UK. The hyperalkaline groundwaters are produced by the leaching of a thin layer (<2 m) of old lime kiln waste above the soil-bedrock surface above the tunnel by rainwater. This results in a different reaction and chemical process to that more commonly associated with the formation of calcium carbonate speleothems from Ca-HCO3-type groundwaters and degassing of CO2. Stalagmites within the Peak Dale tunnel have grown rapidly (averaging 33 mm y-1), following the closure of the tunnel 70 years ago. They have an unusual morphology comprising a central sub-horizontally-laminated column of micro- to nano-crystalline calcium carbonate encompassed by an outer sub-vertical assymetric ripple laminated layer. The stalagmites are largely composed of secondary calcite forming pseudomorphs (<1 mm) which we believe to be predominantly after the ‘cold climate’ calcium carbonate polymorph, ikaite (calcium carbonate hexahydrate: CaCO3•6H2O), with minor volumes of small (<5 μm) pseudomorphs after vaterite. The tunnel has a near constant temperature of 8-9°C which is slightly above the previously published crystallisation temperatures for ikaite (<6°C). Analysis of a stalagmite actively growing at the time of sampling, and preserved immediately within a dry nitrogen cryogenic vessel, indicates that following crystallisation of ikaite, decomposition to calcite occurs rapidly, if not instantaneously. We believe this is the first occurrence of this calcium carbonate polymorph observed within speleothem

    Interleukin-7 deficiency in rheumatoid arthritis: consequences for therapy-induced lymphopenia

    Get PDF
    We previously demonstrated prolonged, profound CD4+ T-lymphopenia in rheumatoid arthritis (RA) patients following lymphocyte-depleting therapy. Poor reconstitution could result either from reduced de novo T-cell production through the thymus or from poor peripheral expansion of residual T-cells. Interleukin-7 (IL-7) is known to stimulate the thymus to produce new T-cells and to allow circulating mature T-cells to expand, thereby playing a critical role in T-cell homeostasis. In the present study we demonstrated reduced levels of circulating IL-7 in a cross-section of RA patients. IL-7 production by bone marrow stromal cell cultures was also compromised in RA. To investigate whether such an IL-7 deficiency could account for the prolonged lymphopenia observed in RA following therapeutic lymphodepletion, we compared RA patients and patients with solid cancers treated with high-dose chemotherapy and autologous progenitor cell rescue. Chemotherapy rendered all patients similarly lymphopenic, but this was sustained in RA patients at 12 months, as compared with the reconstitution that occurred in cancer patients by 3–4 months. Both cohorts produced naïve T-cells containing T-cell receptor excision circles. The main distinguishing feature between the groups was a failure to expand peripheral T-cells in RA, particularly memory cells during the first 3 months after treatment. Most importantly, there was no increase in serum IL-7 levels in RA, as compared with a fourfold rise in non-RA control individuals at the time of lymphopenia. Our data therefore suggest that RA patients are relatively IL-7 deficient and that this deficiency is likely to be an important contributing factor to poor early T-cell reconstitution in RA following therapeutic lymphodepletion. Furthermore, in RA patients with stable, well controlled disease, IL-7 levels were positively correlated with the T-cell receptor excision circle content of CD4+ T-cells, demonstrating a direct effect of IL-7 on thymic activity in this cohort

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    Machine-learning prediction of tumor antigen immunogenicity in the selection of therapeutic epitopes

    Get PDF
    Current tumor neoantigen calling algorithms primarily rely on epitope/major histocompatibility complex (MHC) binding affinity predictions to rank and select for potential epitope targets. These algorithms do not predict for epitope immunogenicity using approaches modeled from tumor-specific antigen data. Here, we describe peptide-intrinsic biochemical features associated with neoantigen and minor histocompatibility mismatch antigen immunogenicity and present a gradient boosting algorithm for predicting tumor antigen immunogenicity. This algorithm was validated in two murine tumor models and demonstrated the capacity to select for therapeutically active antigens. Immune correlates of neoantigen immunogenicity were studied in a pan-cancer data set from The Cancer Genome Atlas and demonstrated an association between expression of immunogenic neoantigens and immunity in colon and lung adenocarcinomas. Lastly, we present evidence for expression of an out-of-frame neoantigen that was capable of driving antitumor cytotoxic T-cell responses. With the growing clinical importance of tumor vaccine therapies, our approach may allow for better selection of therapeutically relevant tumor-specific antigens, including nonclas-sic out-of-frame antigens capable of driving antitumor immunity

    Ion-implanted Nd:MgO:LiNbO<sub>3</sub> planar waveguide laser

    No full text
    Laser oscillation in an ion-implanted planar Nd:MgO:LiNbO3 waveguide is demonstrated for the first time to our knowledge. Details of the waveguide structure, spectroscopic properties, photorefractive effects. and laser performance are given. A simple calculation of the absorbed power threshold gives ~8mW, in fair agreement with the experimental value of ~17mW

    Next-to-next-to-leading order prediction for the photon-to-pion transition form factor

    Get PDF
    We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-pion transition form factor. Our approach is based on the predictive power of the conformal operator product expansion, which is valid for a vanishing β\beta-function in the so-called conformal scheme. The Wilson--coefficients appearing in the non-forward kinematics are then entirely determined from those of the polarized deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose different schemes to include explicitly also the conformal symmetry breaking term proportional to the β\beta-function, and discuss numerical predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references added, to appear in Phys. Rev.

    Anisotropic vortex pinning in superconductors with a square array of rectangular submicron holes

    Full text link
    We investigate vortex pinning in thin superconducting films with a square array of rectangular submicron holes ("antidots"). Two types of antidots are considered: antidots fully perforating the superconducting film, and "blind antidots", holes that perforate the film only up to a certain depth. In both systems, we observe a distinct anisotropy in the pinning properties, reflected in the critical current Ic, depending on the direction of the applied electrical current: parallel to the long side of the antidots or perpendicular to it. Although the mechanism responsible for the effect is very different in the two systems, they both show a higher critical current and a sharper IV-transition when the current is applied along the long side of the rectangular antidots

    B Production Asymmetries in Perturbative QCD

    Get PDF
    This paper explores a new mechanism for B production in which a b quark combines with a light parton from the hard-scattering process before hadronizing into the B hadron. This recombination mechanism can be calculated within perturbative QCD up to a few nonperturbative constants. Though suppressed at large transverse momentum by a factor Lambda_QCD m_b/p_t^2 relative to b quark fragmentation production, it can be important at large rapidities. A signature for this heavy-quark recombination mechanism in proton-antiproton colliders is the presence of rapidity asymmetries in B cross sections. Given reasonable assumptions about the size of nonperturbative parameters entering the calculation, we find that the asymmetries are only significant for rapidities larger than those currently probed by collider experiments.Comment: 17 pages, LaTeX, 4 ps figures, tightenlines, sections added, final version accepted for publication in Phys. Rev.
    corecore