6,368 research outputs found

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin 30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all {2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure

    Visible and Ultraviolet Laser Spectroscopy of ThF

    Full text link
    The molecular ion ThF+^+ is the species to be used in the next generation of search for the electron's Electric Dipole Moment (eEDM) at JILA. The measurement requires creating molecular ions in the eEDM sensitive state, the rovibronic ground state 3Δ1^3\Delta_1, v+=0v^+=0, J+=1J^+=1. Survey spectroscopy of neutral ThF is required to identify an appropriate intermediate state for a Resonance Enhanced Multi-Photon Ionization (REMPI) scheme that will create ions in the required state. We perform broadband survey spectroscopy (from 13000 to 44000~cm1^{-1}) of ThF using both Laser Induced Fluorescence (LIF) and 1+11+1' REMPI spectroscopy. We observe and assign 345 previously unreported vibronic bands of ThF. We demonstrate 30\% efficiency in the production of ThF+^+ ions in the eEDM sensitive state using the Ω=3/2\Omega = 3/2 [32.85] intermediate state. In addition, we propose a method to increase the aforementioned efficiency to \sim100\% by using vibrational autoionization via core-nonpenetrating Rydberg states, and discuss theoretical and experimental challenges. Finally, we also report 83 vibronic bands of an impurity species, ThO.Comment: 49 pages, 7 figure

    Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using surrogate models

    Get PDF
    Simulating a binary black hole (BBH) coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios in [1,10][1, 10] and durations corresponding to about 1515 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms {\em not} used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic 2Ym{}_{-2}Y_{\ell m} waveform modes resolved by the NR code up to =8.\ell=8. We compare our surrogate model to Effective One Body waveforms from 5050-300M300 M_\odot for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).Comment: Updated to published version, which includes a section comparing the surrogate and effective-one-body models. The surrogate is publicly available for download at http://www.black-holes.org/surrogates/ . 6 pages, 6 figure

    Prioritising neonatal medicines research: UK Medicines for Children Research Network scoping survey

    Get PDF
    BACKGROUND: The dosing regimen and indications for many medicines in current use in neonatology are not well defined. There is a need to prioritise research in this area, but currently there is little information about which drugs are used in UK neonatal units and the research needs in this area as perceived by UK neonatologists. METHODS: The Neonatal Clinical Studies Group (CSG) of the Medicines for Children Research Network (MCRN) undertook a 2 week prospective scoping survey study to establish which medicines are used in UK neonatal units; how many babies are receiving them; and what clinicians (and other health professionals) believe are important issues for future research. RESULTS: 49 out of 116 units responded to at least one element of the survey (42%). 37 units reported the number of neonates who received medicines over a 2 week period. A total of 3924 medicine-patient pairs were reported with 119 different medicines. 70% of medicine-patient pairs involved medicines that were missing either a license or dose for either term or preterm neonates. 4.3% of medicine-patient pairs involved medicines that were missing both license and dose for any neonate. The most common therapeutic gap in need of additional research identified by UK neonatologists was chronic lung disease (21 responding units), followed by patent ductus arteriosus and vitamin supplements (11 responding units for both) CONCLUSION: The research agenda for neonatal medicines can be informed by knowledge of current medicine use and the collective views of the neonatal community

    Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods

    Get PDF
    Shallow lakes and ponds constitute a significant number of water bodies worldwide. Many are heterotrophic, indicating that they are likely net contributors to global carbon cycling. Climate change is likely to have important impacts on these waterbodies. In this study, we examined two small Minnesota ponds; a permanent woodland pond and a temporary prairie pond. The woodland pond had lower levels of phosphorus and phytoplankton than the prairie pond. Using the open water oxygen method, we found the prairie pond typically had a higher level of gross primary production (GPP) and respiration (R) than the woodland pond, although the differences between the ponds varied with season. Despite the differences in GPP and R between the ponds the net ecosystem production was similar with both being heterotrophic. Since abundant small ponds may play an important role in carbon cycling and are likely to undergo changes in temperature and hydroperiod associated with climate change, understanding pond metabolism is critical in predicting impacts and designing management schemes to mitigate changes

    Effect of attitudinal, situational and demographic factors on annoyance due to environmental vibration and noise from construction of a light rapid transit system

    Get PDF
    The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT) system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350) near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors

    Multiphase, non-spherical gas accretion onto a black hole

    Full text link
    (Abridged) We investigate non-spherical behavior of gas accreting onto a central supermassive black hole performing simulations using the SPH code GADGET-3 including radiative cooling and heating by the central X-ray source. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (L_X) for a fixed density at infinity and accretion efficiency. In the low L_X limit, gas accretes in a stable, spherically symmetric fashion. In the high L_X limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate L_X, the accretion flow becomes unstable developing prominent non-spherical features, the key reason for which is thermal instability (TI) as shown by our analyses. Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate L_X quickly grow to form cold and dense clumps surrounded by overheated low density regions. The cold clumps continue their inward motion forming filamentary structures; while the hot infalling gas slows down because of buoyancy and can even start outflowing through the channels in between the filaments. We found that the ratio between the mass inflow rates of the cold and hot gas is a dynamical quantity depending on several factors: time, spatial location, and L_X; and ranges between 0 and 4. We briefly discuss astrophysical implications of such TI-driven fragmentation of accreting gas on the formation of clouds in narrow and broad line regions of AGN, the formation of stars, and the observed variability of the AGN luminiosity.Comment: 25 pages, 13 figures. Version accepted for publication in MNRAS. Uploaded version contains low-resolution color figures. Complete paper with high-resolution figures can be found at: http://adlibitum.oats.inaf.it/barai/AllPages/Images-Movies/BHaccr_MultiPhase.pd
    corecore