14 research outputs found

    Assessment of HCC response to Yttrium-90 radioembolization with gadoxetate disodium MRI: correlation with histopathology.

    Get PDF
    Transarterial <sup>90</sup> Y radioembolization (TARE) is increasingly being used for hepatocellular carcinoma (HCC) treatment. However, tumor response assessment after TARE may be challenging. We aimed to assess the diagnostic performance of gadoxetate disodium MRI for predicting complete pathologic necrosis (CPN) of HCC treated with TARE, using histopathology as the reference standard. This retrospective study included 48 patients (M/F: 36/12, mean age: 62 years) with HCC treated by TARE followed by surgery with gadoxetate disodium MRI within 90 days of surgery. Two radiologists evaluated tumor response using RECIST1.1, mRECIST, EASL, and LI-RADS-TR criteria and evaluated the percentage of necrosis on subtraction during late arterial, portal venous, and hepatobiliary phases (AP/PVP/HBP). Statistical analysis included inter-reader agreement, correlation between radiologic and pathologic percentage of necrosis, and prediction of CPN using logistic regression and ROC analyses. Histopathology demonstrated 71 HCCs (2.8 ± 1.7 cm, range: 0.5-7.5 cm) including 42 with CPN, 22 with partial necrosis, and 7 without necrosis. EASL and percentage of tumor necrosis on subtraction at the AP/PVP were independent predictors of CPN (p = 0.02-0.03). Percentage of necrosis, mRECIST, EASL, and LI-RADS-TR had fair to good performance for diagnosing CPN (AUCs: 0.78 - 0.83), with a significant difference between subtraction and LI-RADS-TR for reader 2, and in specificity between subtraction and other criteria for both readers (p-range: 0.01-0.04). Radiologic percentage of necrosis was significantly correlated to histopathologic degree of tumor necrosis (r = 0.66 - 0.8, p < 0.001). Percentage of tumor necrosis on subtraction and EASL criteria were significant independent predictors of CPN in HCC treated with TARE. Image subtraction should be considered for assessing HCC response to TARE when using MRI. • Percentage of tumor necrosis on image subtraction and EASL criteria are significant independent predictors of complete pathologic necrosis in hepatocellular carcinoma treated with <sup>90</sup> Y radioembolization. • Subtraction, mRECIST, EASL, and LI-RADS-TR have fair to good performance for diagnosing complete pathologic necrosis in hepatocellular carcinoma treated with <sup>90</sup> Y radioembolization

    Liver transplantation is possible in some patients with liver metastasis of colon cancer

    No full text
    PubMedID: 21693328Liver metastases from colorectal cancer are an absolute contraindication for liver transplantation. Aggressive therapy with liver resection and local chemotherapy in selected patients may be able to provide long-term cure. Given the risks of tumor recurrence, whether patients with post chemotherapy complications leading to liver failure should be offered transplantation is a challenging question in an era of limited organ availability. Herein we have presented 2 cases of liver transplantation performed in patients with colorectal cancer metastases treated with liver resection followed by hepatic artery infusion chemotherapy leading to development of sclerosing cholangitis and eventual liver failure. This report demonstrates that liver transplantation may be an option in selected patients with colorectal cancer liver metastases that have been well treated. © 2011 Elsevier Inc

    Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid.

    No full text
    To evaluate the diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast agents (EC-MRI) vs. MRI with gadoxetic acid (EOB-MRI) for HCC detection in patients with liver cirrhosis using liver explant as the reference. The additional value of hepatobiliary phase (HBP) post Gadoxetic acid was also assessed. Two-hundred seventy-seven consecutive patients who underwent liver transplantation over a 9 year period and imaging within 90 days of were retrospectively included. Imaging consisted in CT (n = 100), EC-MRI (n = 77) and EOB-MRI (n = 100), the latter subdivided into dynamic EOB-MRI and full EOB-MRI (dynamic+HBP). Three radiologists retrospectively categorized lesions ≥ 1 cm using the LI-RADSv2017 algorithm. Dynamic EOB-MRI was re-evaluated with the addition of HBP. Results were correlated with explant pathology. Pathology demonstrated 265 HCCs (mean size 2.1 ± 1.4 cm) in 177 patients. Per-patient sensitivities were 86.3% for CT, 89.5% for EC-MRI, 92.8% for dynamic EOB-MRI and 95.2% for full EOB-MRI (pooled reader data), with a significant difference between CT and dynamic/full EOB-MRI (p = 0.032/0.002), and between EC-MRI and full EOB-MRI (p = 0.047). Per-lesion sensitivities for CT, EC-MRI, dynamic EOB-MRI and full EOB-MRI were 59.5%,78.5%,69.7% and 76.8%, respectively, with a significant difference between MRI groups and CT (p-range:0.001-0.04), and no difference between EC-MRI and dynamic EOB-MRI (p = 0.949). For HCCs 1-1.9 cm, sensitivities were 34.4%, 64.6%, 57.3% and 67.3%, respectively, with all MRI groups significantly superior to CT (p ≤ 0.01) and full EOB-MRI superior to dynamic EOB-MRI (p = 0.002). EOB-MRI outperforms CT and EC-MRI for per-patient HCC detection sensitivity, and is equivalent to EC-MRI for per-lesion sensitivity. MRI methods outperform CT for detection of HCCs 1-1.9 cm. • MRI is superior to CT for HCC detection in patients with liver cirrhosis. • EOB-MRI outperforms CT and MRI using extracellular contrast agents (EC-MRI) for per-patient HCC detection sensitivity, and is equivalent to EC-MRI for per-lesion sensitivity. • The addition of hepatobiliary phase images improves HCC detection when using gadoxetic acid

    Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation

    No full text
    Background & Aims In patients with hepatocellular carcinoma (HCC), liver transplantation (LT) is an excellent therapy if tumor characteristics are within the Milan criteria. We aimed to define genomic features enabling to identify HCC patients beyond Milan criteria who have acceptable transplant outcomes. Methods Among 770 consecutive HCC patients transplanted between 1990 and 2013, 132 had tumors exceeding Milan criteria on pathology and were enrolled in the study; 44% of the patients satisfied the 'up-to-7 rule' [7 = sum of the size of the largest tumor and the number of tumors]. Explant tumors were assessed for genomic signatures and immunohistochemical markers associated with poor outcome. Results At a median follow-up of 88 months, 64 patients had died and 45 recurred; the 5-year overall survival (OS) and recurrence rates were 57% and 35%, respectively. Cytokeratin 19 (CK19) gene signature was independently associated with recurrence [Hazard ratio (HR) = 2.95, p <0.001], along with tumor size (HR = 3.37, p = 0.023) and presence of satellites (HR = 2.98, p = 0.001). S2 subclass signature was independently associated with poor OS (HR = 3.18, p = 0.001), along with tumor size (HR = 5.06, p <0.001) and up-to-7 rule (HR = 2.50, p = 0.002). Using the presence of progenitor cell markers (either CK19 or S2 signatures) patients were classified into poor prognosis (n = 58; 5-year recurrence 53%, survival 45%) and good prognosis (n = 74; 5-year recurrence 19%, survival 67%) (HR = 3.16, p <0.001 for recurrence, and HR = 1.72, p = 0.04 for OS). Conclusions HCC patients transplanted beyond Milan criteria without gene signatures of progenitor markers (CK19 and S2) achieved survival rates similar as those within Milan criteria. Once prospectively validated, these markers may support a limited expansion of LT indications

    A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma.

    No full text
    Cellular components of solid tumors including DNA are released into the bloodstream, but data on circulating-free DNA (cfDNA) in hepatocellular carcinoma (HCC) are still scarce. This study aimed at analyzing mutations in cfDNA and their correlation with tissue mutations in patients with HCC. We included 8 HCC patients treated with surgical resection for whom we collected paired tissue and plasma/serum samples. We analyzed 45 specimens, including multiregional tumor tissue sampling (n = 24), peripheral blood mononuclear cells (PMBC, n = 8), plasma (n = 8) and serum (n = 5). Ultra-deep sequencing (5500× coverage) of all exons was performed in a targeted panel of 58 genes, including frequent HCC driver genes and druggable mutations. Mutations detected in plasma included known HCC oncogenes and tumor suppressors (e.g., TERT promoter, TP53, and NTRK3) as well as a candidate druggable mutation (JAK1). This approach increased the detection rates previously reported for mutations in plasma of HCC patients. A thorough characterization of cis mutations found in plasma confirmed their tumoral origin, which provides definitive evidence of the release of HCC-derived DNA fragments into the bloodstream. This study demonstrates that ultra-deep sequencing of cfDNA is feasible and can confidently detect somatic mutations found in tissue; these data reinforce the role of plasma DNA as a promising minimally invasive tool to interrogate HCC genetics

    Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo

    No full text
    Background/Aims: The success of sorafenib in the treatment of advanced hepatocellular carcinoma (HCC) has focused interest on the role of Ras signaling in this malignancy. We investigated the molecular alterations of the Ras pathway in HCC and the antineoplastic effects of sorafenib in combination with rapamycin, an inhibitor of mTOR pathway, in experimental models. Methods: Gene expression (qRT-PCR, oligonucleotide microarray), DNA copy number changes (SNP-array), methylation of tumor suppressor genes (methylation specific PCR) and protein activation (immunohistochemistry) were analysed in 351 samples. Anti-tumoral effects of combined therapy, targeting the Ras and mTOR pathways were evaluated in cell lines and HCC xenografts. Results: Different mechanisms accounted for Ras pathway activation in HCC. H-ran was up-regulated during different steps of hepatocarcinogenesis. B-raf was overexpressed in advanced tumors and its expression was associated with genomic amplification. Partial methylation of RASSFIA and NOREIA was detected in 89%, and 44%, of tumors respectively, and complete methylation was found in 11 and 4%, of HCCs. Activation of the pathway (PERK immunostaining) was identified in 10.3'% of HCC. Blockade of Ras and mTOR pathways with sorafenib and rapamycin reduced cell proliferation and induced apoptosis in cell lines. In vivo, the combination of both compounds enhanced tumor necrosis and ulceration when compared with sorafenib alone. Conclusions: Ras activation results from several molecular alterations, such as methylation of tumor suppressors and amplification of oncogenes (B-raf). Sorafenib blocks signaling and synergizes with rapamycin in vivo, preventing tumor progression. These data provide the rationale for testing this combination in clinical studies

    Pivotal role of mTOR signaling in hepatocellular carcinoma

    No full text
    Background & Aims: The advent of targeted therapies in hepatocellular carcinoma (HCC) has underscored the importance of pathway characterization to identify novel molecular targets for treatment. We evaluated mTOR signaling in human HCC, as well as the antitumoral effect of a dual-level blockade of the mTOR pathway. Methods: The mTOR pathway was assessed using integrated data from mutation analysis (direct sequencing), DNA copy number changes (SNP-array), messenger RNA levels (quantitative reverse-transcription polymerase chain reaction and gene expression microarray), and protein activation (immunostaining) in 351 human samples [HCC (n = 314) and nontumoral tissue (n = 37)]. Effects of dual blockade of mTOR signaling using a rapamycin analogue (everolimus) and an epidermal/vascular endothelial growth factor receptor inhibitor (AEE788) were evaluated in liver cancer cell lines and in a xenograft model. Results: Aberrant mTOR signaling (p-RPS6) was present in half of the cases, associated with insulin-like growth factor pathway activation, epidermal growth factor up-regulation, and PTEN dysregulation. PTEN and PI3KCA-B mutations were rare events. Chromosomal gains in RICTOR (25% of patients) and positive p-RPS6 staining correlated with recurrence. RICTOR-specific siRNA down-regulation reduced tumor cell viability in vitro. Blockage of mTOR signaling with everolimus in vitro and in a xenograft model decelerated tumor growth and increased survival. This effect was enhanced in vivo after epidermal growth factor blockade. Conclusions: MTOR signaling has a critical role in the pathogenesis of HCC, with evidence for the role of RICTOR in hepato-oncogenesis. MTOR blockade with everolimus is effective in vivo. These findings establish a rationale for targeting the mTOR pathway in clinical trials in HCC
    corecore