23 research outputs found

    Predicting the audibility and annoyance of unducted fan engines

    Get PDF
    Predictions of the prevalence of annoyance associated with aircraft noise exposure are heavily influenced by field studies conducted in urban airport neighborhoods. Flyovers heard in such relatively high ambient noise environments are composed in large part of high absolute level, broadband noise. In contrast, noise exposure created en route by aircraft powered by unducted fan engines is expected to be relatively low in level, but to contain prominent low frequency tonal energy. These tones will be readily audible in rural and other low ambient noise environments. The annoyance of noise intrusions of low absolute level has been shown to be closely related to their audibility. Thus, one way to predict the annoyance of en route noise generated by unducted fan engines is to estimate its audibility relative to that of conventionally powered aircraft in different ambient noise environments. This may be accomplished by computing the audibility of spectra produced by an aircraft powered by unducted fan engines and comparing predicted probabilities of annoyance for them with those of conventionally powered transport aircraft

    Use of Airport Noise Complaint Files to Improve Understanding of Community Response to Aircraft Noise

    Get PDF
    This study assessed the feasibility of using complaint information archived by modem airport monitoring systems to conduct quantitative analyses of the causes of aircraft noise complaints and their relationship to noise- induced annoyance. It was found that all computer-based airport monitoring systems provide at least rudimentary tools for performing data base searches by complainant name, address, date, time of day, and types of aircraft and complaints. Analyses of such information can provide useful information about longstanding concerns, such as the extent to which complaint rates are driven by objectively measurable aspects of aircraft operations; the degree to which changes in complaint rates can be predicted prior to implementation of noise mitigation measures; and the degree to which aircraft complaint information can be used to simplify and otherwise improve prediction of the prevalence of noise-induced annoyance in communities

    Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    Get PDF
    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure

    Field Evaluations of Sampling, Interviewing, and Flight Tracking of NASA's Low Boom Flight Demonstrator Aircraft

    Get PDF
    The first years effort identified sampling and interviewing as the principal risks to assessment of prompt reactions to overflights producing low-amplitude sonic booms. It also 1) established the utility of geo-information system-based route planning for LBFD flight missions, 2) developed and demonstrated a prototype of a geographically-distributed, Internet-enabled instrumentation system capable of wide-area tracking of LBFD aircraft in near-real time. The latter system permits synchronizing the conduct of interviews in multiple overflown communities with arrival times of shock waves at interviewing sites; and of measuring, archiving, and processing their acoustic signatures. Means were also recommended for constructing representative, telephone-based samples of eligible respondents living in households within carpet boom corridors adjacent to LBFD flight tracks, and for conducting interviews with cross-sectional (independent) samples of such respondents about their prompt reactions to exposure to low-amplitude sonic booms. A detailed study design was prepared and accepted by NASA for a set of single-contact attempt telephone interviews with a nationally representative sample of households. The study design focused on testing automated and live agent interview completion rates obtainable without callbacks. A minimal (two monitoring station) version of the aircraft tracking system was built and installed near a civil airport in a successful demonstration of the systems ability to detect and track aircraft movements. The field exercise also demonstrated the ability of the system to capture the acoustic emissions of departing aircraft, and to serve aircraft position and sound level information to remote, geographically-distributed analysts in near-real time. Upon approval of OMB and IRB of the detailed study plan, a stratified, nationally representative sample of landline and wireless telephone-subscribing households was constructed. A total of 12,734 telephone interview contact attempts of the sort required by a straightforward cross-sectional study design were then made. These contact attempts demonstrated the impracticality of conducting a time-critical, cross-sectional study of prompt community response to low-amplitude sonic booms by means of independent (single contact attempt per respondent for each LBFD flight mission) telephone samples of respondents. The observed interview completion rates for these single telephone contact attempts were so low (~ 1% to 3% for automated and live agent interviews, respectively) that: 1) the representativeness of collected opinions would be susceptible to intuitive challenge as inadequate, even absent conclusive evidence of non-representativeness. Refuting challenges to representativeness would have to demonstrate that the composition of the actual sample did not differ from that of the target population, a task that is tantamount to proving a negative; 2) the information required to refute allegations of non-representativeness would require a questionnaire considerably lengthier than that required simply to determine the prevalence of boom-induced startle and annoyance. Such a questionnaire would have to inquire about potentially sensitive and intrusive matters, including respondents age, gender, education, employment, home ownership, income, ethnicity, family size, and other demographic factors; and 3) unreasonable numbers of attempts would be required to re-contact households with unsuccessful initial contact attempts, given the limited time available for doing so. For example, if about 500 completed interviews were desired in a supersonically overflown community, approximately 50,000 automated interview attempts would have to be made within ten to fifteen minutes of each LBFD overflight. Such large numbers of contact attempts could well exceed the numbers of households available for interview in areas of similar boom exposure levels in some communities near LBFD flight tracks. Such large numbers of interviews could be cost-effectively undertaken only by means of automated (i.e., outgoing interactive voice response) interviewing, a data collection method ill-suited for complex and sensitive questionnaire items. The infeasibility of independent sampling for evaluating prompt responses to LBFD overflights in a cross-sectional study is due in large part to simple non-response: that is, potential respondents particularly those contacted on wireless telephones refusing to answer calls with unfamiliar caller IDs. It is also due in part, however, to 1) the lack of time to attempt to contact the same respondent more than once within a few minutes after the arrival of a shock wave at the respondents location; and 2) the need to place calls during weekday/daytime hours, when response rates are notably lower than during evenings and weekends. Despite the poor interview completion rates achieved under the above constraints, cross sectional assessments of delayed reactions to LBFD overflights could still be feasible, if multiple attempts could be made to contact respondents during evening and weekend time periods, over extended time periods. Detailed plans for a longitudinal (panel) sample were developed as an alternative to a cross sectional sample design

    Deriving a dosage-response relationship for community response to high-energy impulsive noise

    Get PDF
    The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area

    Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Get PDF
    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large

    Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    Get PDF
    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads

    Laboratory Study of the Noticeability and Annoyance of Sounds of Low Signal-to-Noise Ratio

    Get PDF
    This report describes a study of the noticeability and annoyance of intruding noises to test participants who were engaged in a distracting foreground task. Ten test participants read material of their own choosing while seated individually in front of a loudspeaker in an anechoic chamber. One of three specially constructed masking noise environments with limited dynamic range was heard at all times. A laboratory computer produced sounds of aircraft and ground vehicles as heard at varying distances at unpredictable intervals and carefully controlled levels. Test participants were instructed to click a computer mouse at any time that a noise distinct from the background noise environment came to their attention, and then to indicate their degree of annoyance with the noise that they had noticed. The results confirmed that both the noticeability of noise intrusions and their annoyance were closely related to their audibility

    An Assessment of Commuter Aircraft Noise Impact

    Get PDF
    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports

    Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    Get PDF
    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level
    corecore