177 research outputs found

    Th17 Cells and IL-17 in Protective Immunity to Vaginal Candidiasis

    Get PDF
    Background: Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC). Methods: To monitor the course of infection we exploited a new in vivo imaging technique. Results: i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of bdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment. Conclusions: These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis

    C. albicans Colonization of Human Mucosal Surfaces

    Get PDF
    Background: Candida albicans is a low level commensal organism in normal human populations with the continuous potential to expand and cause a spectrum of clinical conditions. Methodology/Principal Findings: Using ex vivo human organ cultures and populations of primary human cells, we have developed several related experimental systems to examine early-stage interactions between C. albicans and mucosal surfaces. Experiments have been conducted both with exogenously added C. albicans and with overtly normal human mucosal surfaces supporting pre-existing infections with natural isolates of Candida. Under different culture conditions, we have demonstrated the formation of C. albicans colonies on human target cells and filament formation, equivalent to tissue invasion. Conclusions/Significance: These organ culture systems provide a valuable new resource to examine the molecular and cellular basis for Candida colonization of human mucosal surfaces

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Intestinal Resident Yeast Candida glabrata Requires Cyb2p-Mediated Lactate Assimilation to Adapt in Mouse Intestine

    Get PDF
    The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata

    The relationship between the symptoms of female gonococcal infections and serum progesterone level and the genotypes of Neisseria gonorrhoeae multi-antigen sequence type (NG-MAST) in Wuhan, China

    Get PDF
    The objective of this investigation was to study the relationship between the symptoms of female gonococcal infections and serum progesterone level and the genotypes of Neisseria gonorrhoeae multi-antigen sequence type (NG-MAST) in Wuhan, China. Eighty-one strains of N. gonorrhoeae were harvested from the vaginal discharge of 975 adult females in Wuhan and were genotyped by using NG-MAST. Serum progesterone (P) and estradiol (E2) levels were measured by radio immunoassay (RIA) in 39 gonorrhea-infected patients with slight symptoms (asymptomatic group) and 42 patients with conspicuous symptoms (symptomatic group). The average levels of serum progesterone in the asymptomatic group were significantly higher than in the symptomatic group (p < 0.05), while no significant difference was found in serum estradiol between the two groups. Of 81 wild-type isolates, 50 NG-MAST sequence types were associated with female infections in Wuhan, and N. gonorrhoeae ST2951, ST735, and ST436 were principally found in asymptomatic patients. ST809 and ST369, however, were mainly detected in asymptomatic female subjects. Gonococcal genetic island (GGI)-positive and GGI-negative strains were found in both the asymptomatic group and the symptomatic group. In females with gonococcal infection, high serum progesterone level is associated with the absence of symptoms, but no association was revealed between genotypes and the presence of symptoms. The GGI bears no relation to the absence of symptoms in the patients

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms

    Get PDF
    We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985-1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C. glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting "mutant" strains can have increased fitness in a certain patient "environment"

    Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from <it>Mentha suaveolens </it>(EOMS) in an experimental infection of vaginal candidiasis.</p> <p>Methods</p> <p>The <it>in vitro </it>and <it>in vivo </it>activity of EOMS was assessed. The <it>in vitro </it>activity was evaluated under standard CLSI methods, and the <it>in vivo </it>analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an <it>in vivo </it>imaging technique.</p> <p>Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Student's t-test (two-tailed).</p> <p>Results</p> <p>Our main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an <it>in vitro </it>experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an <it>in vivo </it>experimental system.</p> <p>Conclusions</p> <p>This study shows for the first time that the essential oil of a Moroccan plant <it>Mentha suaveolens </it>is candidastatic and candidacidal <it>in vitro</it>, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an <it>in vivo </it>monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans.</p

    β-Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism

    Get PDF
    The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida
    corecore