143 research outputs found

    CD97 is differentially expressed on murine hematopoietic stem-and progenitor-cells

    Full text link

    Second-line treatment for acute graft-versus-host disease with mesenchymal stromal cells. a decision model

    Get PDF
    Objective: No standard second-line treatment exists for acute graft-versus-host disease steroid-refractory (SR-aGvHD), and long-term outcomes remain poor. Mesenchymal stromal cells (MSCs) have been evaluated as treatment, but no disease model (DM) exists that integrates and extrapolates currently available evidence. The aim of this study was to develop such a DM to describe the natural history of SR-aGvHD and to predict long-term outcomes. Method: The DM was developed in collaboration with experts in haematology-oncology. Subsequently, a model simulation was run. Input parameters for transition and survival estimates were informed by published data of clinical trials on MSC treatment for SR-aGvHD. Parametric distributions were used to estimate long-term survival rates after MSCs. Results: The newly developed DM is a cohort model that consists of eight health states. For the model simulation, we obtained data on 327 patients from 14 published phase II trials. Due to limited evidence, DM structure was simplified and several assumptions had to be made. Median overall survival was 3.2 years for complete response and 0.5 years for no complete response. Conclusion: The DM provides a comprehensive overview on the second-line treatment pathway for aGvHD and enables long-term predictions that can be used to perform a cost-effectiveness analysis comparing any treatment for SR-aGvHD

    Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I

    Get PDF
    Mesenchymal stromal cells (MSCs) are pluripotent cells that have immunosuppressive effects both in vitro and in experimental colitis. Promising results of MSC therapy have been obtained in patients with severe graft versus host disease of the gut. Our objective was to determine the safety and feasibility of autologous bone marrow derived MSC therapy in patients with refractory Crohn's disease. 10 adult patients with refractory Crohn's disease (eight females and two males) underwent bone marrow aspiration under local anaesthesia. Bone marrow MSCs were isolated and expanded ex vivo. MSCs were tested for phenotype and functionality in vitro. 9 patients received two doses of 1-2×10(6) cells/kg body weight, intravenously, 7 days apart. During follow-up, possible side effects and changes in patients' Crohn's disease activity index (CDAI) scores were monitored. Colonoscopies were performed at weeks 0 and 6, and mucosal inflammation was assessed by using the Crohn's disease endoscopic index of severity. MSCs isolated from patients with Crohn's disease showed similar morphology, phenotype and growth potential compared to MSCs from healthy donors. Importantly, immunomodulatory capacity was intact, as Crohn's disease MSCs significantly reduced peripheral blood mononuclear cell proliferation in vitro. MSC infusion was without side effects, besides a mild allergic reaction probably due to the cryopreservant DMSO in one patient. Baseline median CDAI was 326 (224-378). Three patients showed clinical response (CDAI decrease ≥70 from baseline) 6 weeks post-treatment; conversely three patients required surgery due to disease worsening. Administration of autologous bone marrow derived MSCs appears safe and feasible in the treatment of refractory Crohn's disease. No serious adverse events were detected during bone marrow harvesting and administratio

    Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105^+ and CD271^+ cells

    Get PDF
    Mesenchymal Stem Cells (MSC) are employed in gene and cellular therapies. Routinely MSC are isolated from bone marrow mononuclear cells (MNC) by plastic adherence. Here we compared new isolation strategies of bone marrow MSC including immunodepletion of hematopoietic cells and immunomagnetic isolation of CD105+ and CD271+ populations. Four fractions were obtained: MNC MSC, RosetteSep-isolated MSC, CD105+ and CD271+ sorted MSC. We evaluated i) number of CFU-F colonies, ii) cell phenotype, iii) in vitro differentiation of expanded cells and iv) expression of osteo/adipogenesis related genes. Results: Average number of day 9 CFU-F colonies was the highest for CD271 positive fraction. Real-Time PCR analysis revealed expression of RUNX2, PPARgamma and N-cadherin in isolated cells, particularly high in CD271+ cells. Expression of CD105, CD166, CD44, CD73 antigens was comparable for all expanded populations (over 90%). We observed various levels of hematopoietic contamination with the highest numbers of CD45+ cells in MNC-MSC fraction and the lowest in CD105+ and CD271+ fractions. Cells of all the fractions were CD34 antigen negative. Expanded CD105 and CD271 populations showed higher level of RUNX2, osteocalcin, PTHR, leptin, PPARgamma2 and aggrecan1 genes except for alpha1 collagen. After osteogenic differentiation CD105+ and CD271+ populations showed lower expression of RUNX, PPARgamma2 and also lower expression of osteocalcin and PTHR than MNC, with comparable alpha1-collagen expression. Chondrogenic and adipogenic gene expression was higher in MNC. More clonogenic CD105+ and particularly CD271+ cells, which seem to be the most homogenous fractions based on Real-Time PCR and immunostaining data, are better suited for MSC expansion
    corecore