67 research outputs found

    Advancing gene therapies, methods, and technologies for Parkinson’s Disease and other neurological disorders

    Get PDF
    Introduction. Vector-based intracerebral gene therapies are being used to treat specific neurodegenerative conditions such as Parkinson’s Disease (PD). This review presents a basis for central nervous system (CNS) gene therapy treatments of neurodegenerative diseases such as PD, as well as the need for novel skill sets and health delivery strategies within the clinical neurosciences (neurology and neurosurgery) to meet future demand for such therapies.State of the art. Preclinical vector-based gene therapy approaches have been translated into clinical trials for PD and other neurodegenerative conditions. Unfortunately, such trials, and parallel efforts using other therapeutics, have yet to provide a breakthrough. Image-guided convection enhanced delivery (CED) optimises the parenchymal distribution of gene therapies applied within the CNS, and may ultimately provide such a breakthrough.Clinical implications. Currently, image-guided CED and gene therapy are not part of training programmes for most neurosurgeons and neurologists. As a result, few medical centres and hospitals have sufficiently experienced teams to participate in gene transfer clinical trials for PD or other neurological conditions. If CNS gene therapies prove to be efficacious for PD and/or other conditions, the demand for such treatments will overwhelm the available number of experienced clinical neuroscience teams and treatment centres.Future directions. Expanded indications and demand for CNS gene therapies will require a worldwide educational effort to supplement the training of clinical neuroscience practitioners. Initially, a limited number of Centres of Excellence will need to establish relevant educational training requirements and best practice for such therapeutic approaches. Advanced technologies, including robotics and artificial intelligence, are especially germane in this regard, and will expand the treatment team’s capabilities while assisting in the safe and timely care of those afflicted

    Metabolomic biomarkers of pancreatic cancer: a meta-analysis study

    Get PDF
    Pancreatic cancer (PC) is an aggressive disease with high mortality rates, however, there is no blood test for early detection and diagnosis of this disease. Several research groups have reported on metabolomics based clinical investigations to identify biomarkers of PC, however there is a lack of a centralized metabolite biomarker repository that can be used for meta-analysis and biomarker validation. Furthermore, since the incidence of PC is associated with metabolic syndrome and Type 2 diabetes mellitus (T2DM), there is a need to uncouple these common metabolic dysregulations that may otherwise diminish the clinical utility of metabolomic biosignatures. Here, we attempted to externally replicate proposed metabolite biomarkers of PC reported by several other groups in an independent group of PC subjects. Our study design included a T2DM cohort that was used as a non-cancer control and a separate cohort diagnosed with colorectal cancer (CRC), as a cancer disease control to eliminate possible generic biomarkers of cancer. We used targeted mass spectrometry for quantitation of literature-curated metabolite markers and identified a biomarker panel that discriminates between normal controls (NC) and PC patients with high accuracy. Further evaluation of our model with CRC, however, showed a drop in specificity for the PC biomarker panel. Taken together, our study underscores the need for a more robust study design for cancer biomarker studies so as to maximize the translational value and clinical implementation.This work was supported by ACS IRG-92-152-17 pilot award number AWD4470404 to KU and AKC. The authors would like to acknowledge the Metabolomics Shared Resource in Georgetown University (Washington DC, USA) partially supported by NIH/NCI/CCSG grant P30-CA05100

    GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop

    Get PDF
    The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.Peer reviewe

    Systems healthcare: a holistic paradigm for tomorrow.

    No full text
    • …
    corecore