46 research outputs found

    Metabolism of bile acids in the post-prandial state

    Get PDF
    The modulation of energy expenditure by dietary administration of cholic acid in mice promoted interest in studying bile acid(s) (BA) as adjuvants in the treatment of metabolic diseases such as obesity and diabetes. Bile acids can modulate intermediary metabolism by acting directly on nuclear as well as G-protein-coupled receptors or indirectly through changes in gut microbiota. Despite the potential of BA to affect intermediary metabolism, plasma kinetics and changes in individual BA in blood in the post-prandial state have been neglected for a long time. Minutes after ingestion of a meal (or a glucose challenge), the plasma BA concentration increases as a result of the secretion of bile into the duodenum, followed by intestinal absorption and a systemic circulation spillover. A large inter-individual variability of post-prandial kinetics of plasma BA is documented. Factors such as gender, diet composition, circadian oscillations, and individual capacities for the synthesis and transport of BA play important roles in determining this variability and are discussed in the present short review in light of new findings

    Dynamic patterns of postprandial metabolic responses to three dietary challenges

    Get PDF
    Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) “decrease-increase” (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) “increase-decrease” (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) “steady decrease” with metabolites reflecting a carryover from meals prior to the study, and (iv) “mixed” decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake

    Metabolic regulation and production of oxygen reactive species during muscule contraction: effect of glycogen on intracellular redox state

    Get PDF
    O exercício físico prolongado reduz os estoques de glicogênio muscular. Nessas condições, os processos de fadiga muscular são estimulados coincidindo com um aumento na produção de espécies reativas de oxigênio. A suplementação de carboidratos ou de antioxidantes isoladamente contribui para a melhora da performance muscular, sugerindo um efeito importante da depleção de substrato (glicose) e do aumento da produção de EROs no desenvolvimento da fadiga muscular durante a atividade física. Embora o mecanismo seja desconhecido, estamos propondo neste estudo que uma maior disponibilidade de glicogênio poderia favorecer uma maior atividade da via das pentoses fosfato, aumentando a disponibilidade de NADPH e GSH no tecido muscular esquelético. Uma maior capacidade antioxidante aumentaria a capacidade do tecido muscular em atividade, mantendo o equilíbrio redox durante atividade física prolongada e melhorando o desempenho. Neste processo, o ciclo glicose-ácido graxo pode ser importante aumentando a oxidação de lipídio e reduzindo o consumo de glicogênio durante a atividade prolongada. Além disso, um aumento na produção de EROs pode reduzir a atividade de enzimas importantes do metabolismo celular incluindo a aconitase e a a-cetoglutarato desidrogenase, comprometendo a produção de energia oxidativa, via predominante na produção de ATP durante a atividade muscular prolongada.Fatigue is closely related to the depletion of glycogen in the skeletal muscle during prolonged exercise. Under this condition, the production of oxygen reactive species (ROS) is substantially increased. It has been shown that dietary supplementation of carbohydrate or antioxidant attenuates muscle fatigue during contraction. This suggests that glycogen availability and/or elevated ROS production plays an important role on muscle fatigue development during prolonged muscle activity. Although the mechanism is still unknown, we propose that elevated muscle glycogen availability may lead to a high activity of hexose monophosphate pathway, increasing the NADPH and glutathione concentration in the skeletal muscle tissue. Elevated antioxidant capacity would increase the muscle redox balance during muscle contraction, improving performance. In this process, the glucose-fatty acid cycle may be important to increase lipid oxidation and consequently decrease glycogen utilization during prolonged activity. In addition, an elevated ROS production could reduce the activity of key metabolic enzymes including aconitase and a-ketoglutarate dehydrogenase, decreasing the oxidative energy production in the skeletal muscle during prolonged activity.FAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNP

    Regulation of glucose and fatty acid metabolism in skeletal muscle during contraction

    Get PDF
    O ciclo glicose-ácido graxo explica a preferência do tecido muscular pelos ácidos graxos durante atividade moderada de longa duração. Em contraste, durante o exercício de alta intensidade, há aumento na disponibilidade e na taxa de oxidação de glicose. A produção de espécies reativas de oxigênio (EROs) durante a atividade muscular sugere que o balanço redox intracelular é importante na regulação do metabolismo de lipídios/carboidratos. As EROs diminuem a atividade do ciclo de Krebs e aumentam a atividade da proteína desacopladora mitocondrial. O efeito oposto é esperado durante a atividade moderada. Assim, as questões levantadas nesta revisão são: Por que o músculo esquelético utiliza preferencialmente os lipídios no estado basal e de atividade moderada? Por que o ciclo glicose-ácido graxo falha em exercer seus efeitos durante o exercício intenso? Como o músculo esquelético regula o metabolismo de lipídios e carboidratos em regime envolvendo o ciclo contração-relaxamento555303313CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãoThe glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle

    Regulation of glucose and fatty acid metabolism in skeletal muscle during contraction

    Get PDF
    O ciclo glicose-ácido graxo explica a preferência do tecido muscular pelos ácidos graxos durante atividade moderada de longa duração. Em contraste, durante o exercício de alta intensidade, há aumento na disponibilidade e na taxa de oxidação de glicose. A produção de espécies reativas de oxigênio (EROs) durante a atividade muscular sugere que o balanço redox intracelular é importante na regulação do metabolismo de lipídios/carboidratos. As EROs diminuem a atividade do ciclo de Krebs e aumentam a atividade da proteína desacopladora mitocondrial. O efeito oposto é esperado durante a atividade moderada. Assim, as questões levantadas nesta revisão são: Por que o músculo esquelético utiliza preferencialmente os lipídios no estado basal e de atividade moderada? Por que o ciclo glicose-ácido graxo falha em exercer seus efeitos durante o exercício intenso? Como o músculo esquelético regula o metabolismo de lipídios e carboidratos em regime envolvendo o ciclo contração-relaxamento.The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle

    Effects of diets with different omega 3 fatty acids content on energy metabolism - modulation of peroxisomes function.

    No full text
    Ácidos graxos ácidos saturados induzem resistência à insulina, enquanto ácidos graxos poliinsaturados ômega-3 previnem. Camundongos Swiss foram tratados com dieta controle e dietas contendo óleo de peixe a 4% (NFO) e 40% (HFO) ou banha de suínos a 4% (NL) e 40% (HL) por oito semanas. O grupo HFO apresentou menor massa gorda e peso corpóreo em relação ao HL. Nos grupos NFO e HFO, a insulinemia, glicemia basal e aquela durante o teste de tolerância à glicose foi menor em relação ao HL. Apesar de não haver diferenças no conteúdo de triacilgliceróis no músculo esquelético, o grupo HFO apresentou 60% menos triacilgliceróis no fígado que nos grupos NL e HL. O menor consumo de oxigênio associado ao aumento da oxidação parcial do ácido palmítico e da atividade da acil CoA oxidase no fígado dos animais HFO, indicam maior oxidação peroxissomal de AG. Este processo demanda a metabolização de maior número de moléculas de AG, contribuindo para o menor acúmulo de gordura e preservação da tolerância à glicose.Saturated fatty acids induce insulin resistance, while omega-3 polyunsaturated fatty acids prevent it. Swiss mice were fed on diets containing fish oil at 4% (NFO) and 40% (HFO) or lard at 4% and 40% for eight weeks. The HFO group showed smaller fat mass and body weight compared to HL. In the groups NFO and HFO, basal insulinemia and glycemia and the area under the curve during glucose tolerance test were lower, compared to HL. Despite no differences on skeletal muscle triacylglycerol content, the HFO group had 60% less triacylglycerols in the liver, compared to NL and HL. The lower oxigen consumption associated to the increase in partial oxidation of palmitic acid and activity of acyl CoA oxidase in the liver of the HFO group, indicate increased peroxisomal oxidation of fatty acids. This process demands the metabolization of more fatty acid molecules, contributing to the decresed fat acumulation and preservation of glucose tolerance

    Metabolism of bile acids in the post-prandial state

    No full text
    PubMed: 27980090The modulation of energy expenditure by dietary administration of cholic acid in mice promoted interest in studying bile acid(s) (BA) as adjuvants in the treatment of metabolic diseases such as obesity and diabetes. Bile acids can modulate intermediary metabolism by acting directly on nuclear as well as G-protein-coupled receptors or indirectly through changes in gut microbiota. Despite the potential of BA to affect intermediary metabolism, plasma kinetics and changes in individual BA in blood in the post-prandial state have been neglected for a long time. Minutes after ingestion of a meal (or a glucose challenge), the plasma BA concentration increases as a result of the secretion of bile into the duodenum, followed by intestinal absorption and a systemic circulation spillover. A large inter-individual variability of post-prandial kinetics of plasma BA is documented. Factors such as gender, diet composition, circadian oscillations, and individual capacities for the synthesis and transport of BA play important roles in determining this variability and are discussed in the present short review in light of new finding
    corecore