189 research outputs found

    Some remarks about the positivity of random variables on a Gaussian probability space

    Get PDF
    Let (W,H,ÎĽ)(W,H,\mu) be an abstract Wiener space and LL be a probability density of class LlogL. Using the measure transportation of Monge-Kantorovitch, we prove that the kernel of the projection of L on the second Wiener chaos defines an (Hilbert-Schmidt) operator which is lower bounded by another Hilbert-Schmidt operator.Comment: 6 page

    Computational Crystal Plasticity: From Single Crystal to Homogenized Polycrystals

    Get PDF
    Crystal plasticity models for single crystals at large deformation are shown. An extension to the computation of polycrystals is also proposed. The scale transition rule is numerically identified on polycrystal computations, and is valid for any type of loading. All these models are implemented in a finite element code, which has a sequential and a parallel version. Parallel processing makes CPU time reasonable, even for 3D meshes involving a large number of internal variables (more than 1000) at each Gauss point.Together with a presentation of the numerical tools, the paper shows several applications, a study of the crack tip strain fields in single crystals, of zinc coating on a steel substrate, specimen computation involving a large number of grains in each Gauss point. Finally, polycrystalline aggregates are generated, and numerically tested. The effect of grain boundary damage, opening and sliding is investigated

    The Monge problem in Wiener Space

    Full text link
    We address the Monge problem in the abstract Wiener space and we give an existence result provided both marginal measures are absolutely continuous with respect to the infinite dimensional Gaussian measure {\gamma}

    Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems

    Get PDF
    This article describes a bridge between POD-based model order reduction techniques and the classical Newton/Krylov solvers. This bridge is used to derive an efficient algorithm to correct, "on-the-fly", the reduced order modelling of highly nonlinear problems undergoing strong topological changes. Damage initiation problems are addressed and tackle via a corrected hyperreduction method. It is shown that the relevancy of reduced order model can be significantly improved with reasonable additional costs when using this algorithm, even when strong topological changes are involved

    Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below

    Get PDF
    This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces (X,d,m). Our main results are: - A general study of the relations between the Hopf-Lax semigroup and Hamilton-Jacobi equation in metric spaces (X,d). - The equivalence of the heat flow in L^2(X,m) generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures P(X). - The proof of density in energy of Lipschitz functions in the Sobolev space W^{1,2}(X,d,m). - A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott & Villani [30] and Sturm [39,40], and require neither the doubling property nor the validity of the local Poincar\'e inequality.Comment: Minor typos corrected and many small improvements added. Lemma 2.4, Lemma 2.10, Prop. 5.7, Rem. 5.8, Thm. 6.3 added. Rem. 4.7, Prop. 4.8, Prop. 4.15 and Thm 4.16 augmented/reenforced. Proof of Thm. 4.16 and Lemma 9.6 simplified. Thm. 8.6 corrected. A simpler axiomatization of weak gradients, still equivalent to all other ones, has been propose
    • …
    corecore