241 research outputs found
An evlauation of the three-dimensional split-film anemometer for measurements of atmospheric turbulence
A three-dimensional split-film anemometer was tested in turbulent, as well as in nonturbulent flow downstream from a wind tunnel turbulence grid. The data obtained with this probe in the turbulence behind the grid, indicated that the measured turbulence intensities were somewhat lower than the intensity measured with the conventional hot-wire anemometry; a result of the finite dimensions of the sensor arrays. The probe yaw angle was determined to be accurate within three degrees. Statistical averages, determined by mean-wind direction and vertical and lateral directions were computed on the basis of the probe yaw angle
Three level atom optics via the tunneling interaction
Three level atom optics (TLAO) is introduced as a simple, efficient and
robust method to coherently manipulate and transport neutral atoms. The
tunneling interaction among three trapped states allows to realize the spatial
analog of the stimulated Raman adiabatic passage (STIRAP), coherent population
trapping (CPT), and electromagnetically induced transparency (EIT) techniques.
We investigate a particular implementation in optical microtrap arrays and show
that under realistic parameters the coherent manipulation and transfer of
neutral atoms among dipole traps could be realized in the millisecond range.Comment: 5 pages, 6 figure
Adiabatic population transfer via multiple intermediate states
This paper discusses a generalization of stimulated Raman adiabatic passage
(STIRAP) in which the single intermediate state is replaced by intermediate
states. Each of these states is connected to the initial state \state{i} with
a coupling proportional to the pump pulse and to the final state \state{f}
with a coupling proportional to the Stokes pulse, thus forming a parallel
multi- system. It is shown that the dark (trapped) state exists only
when the ratio between each pump coupling and the respective Stokes coupling is
the same for all intermediate states. We derive the conditions for existence of
a more general adiabatic-transfer state which includes transient contributions
from the intermediate states but still transfers the population from state
\state{i} to state \state{f} in the adiabatic limit. We present various
numerical examples for success and failure of multi- STIRAP which
illustrate the analytic predictions. Our results suggest that in the general
case of arbitrary couplings, it is most appropriate to tune the pump and Stokes
lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure
Methods for Assessing Child and Family Outcomes in Early Childhood Special Education Programs
Although many concerns have been raised about methods of assessing outcomes in early childhood special education programs, professionals in the field are nevertheless faced with the need to select appropriate instruments for evaluating child and family outcomes as the result of intervention. A conference to address the current assessment needs of professionals was convened. This paper summarizes this conference, in which five prominent individuals in the field of early childhood special education gave specific recommendations for one child and one family outcome measure which would be applicable to a range of handicapped children between birth and age 5 being served in typical early intervention programs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68510/2/10.1177_027112148600600202.pd
Team sports performance analysed through the lens of social network theory: implications for research and practice
This paper discusses how social network analyses and graph theory can be implemented in team sports performance analyses to evaluate individual (micro) and collective (macro) performance data, and how to use this information for designing practice tasks. Moreover, we briefly outline possible limitations of social network studies and provide suggestions for future research. Instead of cataloguing discrete events or player actions, it has been argued that researchers need to consider the synergistic interpersonal processes emerging between teammates in competitive performance environments. Theoretical assumptions on team coordination prompted the emergence of innovative, theoretically-driven methods for assessing collective team sport behaviours. Here, we contribute to this theoretical and practical debate by conceptualising sports teams as complex social networks. From this perspective, players are viewed as network nodes, connected through relevant information variables (e.g., a ball passing action), sustaining complex patterns of interaction between teammates (e.g., a ball passing network). Specialized tools and metrics related to graph theory could be applied to evaluate structural and topological properties of interpersonal interactions of teammates, complementing more traditional analysis methods. This innovative methodology moves beyond use of common notation analysis methods, providing a richer understanding of the complexity of interpersonal interactions sustaining collective team sports performance. The proposed approach provides practical applications for coaches, performance analysts, practitioners and researchers by establishing social network analyses as a useful approach for capturing the emergent properties of interactions between players in sports teams
Recommended from our members
Entry State Distributions of Discrete Yrast Transitions in Heavy Ion Induced Fusion Reactions
Gamma rays emitted during yrast transitions from compound nuclei are detected with a 4..pi.. multielement gamma ray detector system. Both total pulse height (H) and coincidence fold data (k) are obtained for each event. Results presented include entry state distribution states, k and H projections for some of these distributions, and k and H as a function of spin of the yrast transition. 5 figs. (DWL
Effects of Brood Pheromone Modulated Brood Rearing Behaviors on Honey Bee (Apis mellifera L.) Colony Growth
A hallmark of eusociality is cooperative brood care. In most social insect systems brood rearing labor is divided between individuals working in the nest tending the queen and larvae, and foragers collecting food outside the nest. To place brood rearing division of labor within an evolutionary context, it is necessary to understand relationships between individuals in the nest engaged in brood care and colony growth in the honey bee. Here we examined responses of the queen, queen-worker interactions, and nursing behaviors to an increase in the brood rearing stimulus environment using brood pheromone. Colony pairs were derived from a single source and were headed by open-mated sister queens, for a total of four colony pairs. One colony of a pair was treated with 336 µg of brood pheromone, and the other a blank control. Queens in the brood pheromone treated colonies laid significantly more eggs, were fed longer, and were less idle compared to controls. Workers spent significantly more time cleaning cells in pheromone treatments. Increasing the brood rearing stimulus environment with the addition of brood pheromone significantly increased the tempo of brood rearing behaviors by bees working in the nest resulting in a significantly greater amount of brood reared
Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4
BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones. © 2011 Bell et al
Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes
Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network
- …