977 research outputs found

    Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”

    Get PDF
    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view

    Attosecond electron thermalization by laser-driven electron recollision in atoms

    Get PDF
    Nonsequential multiple ionization of atoms in intense laser fields is initiated by a recollision between an electron, freed by tunneling, and its parent ion. Following recollision, the initial electron shares its energy with several bound electrons. We use a classical model based on rapid electron thermalization to interpret recent experiments. For neon, good agreement with the available data is obtained with an upper bound of 460 attoseconds for the thermalization time.Comment: 5 pages revtex and 4 figures (eps files

    Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats

    Get PDF
    BACKGROUND: Minocycline, a semi-synthetic tetracycline antibiotic, is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally. The aim of this study was to determine if minocycline was effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO) when given at lower intravenous (IV) doses that correspond to human clinical exposure regimens. METHODS: Rats underwent 90 minutes of TMCAO. Minocycline or saline placebo was administered IV starting at 4, 5, or 6 hours post TMCAO. Infarct volume and neurofunctional tests were carried out at 24 hr after TMCAO using 2,3,5-triphenyltetrazolium chloride (TTC) brain staining and Neurological Score evaluation. Pharmacokinetic studies and hemodynamic monitoring were performed on minocycline-treated rats. RESULTS: Minocycline at doses of 3 mg/kg and 10 mg/kg IV was effective at reducing infarct size when administered at 4 hours post TMCAO. At doses of 3 mg/kg, minocycline reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56%. Minocycline at a dose of 10 mg/kg significantly reduced infarct size at 5 hours by 40% and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction. There was a significant difference in neurological scores favoring minocycline in both the 3 mg/kg and 10 mg/kg doses at 4 hours and at the 10 mg/kg dose at 5 hours. Minocycline did not significantly affect hemodynamic and physiological variables. A 3 mg/kg IV dose of minocycline resulted in serum levels similar to that achieved in humans after a standard 200 mg dose. CONCLUSIONS: The neuroprotective action of minocycline at clinically suitable dosing regimens and at a therapeutic time window of at least 4–5 hours merits consideration of phase I trials in humans in view of developing this drug for treatment of stroke

    Experiences of learning through collaborative evaluation from a masters programme in professional education

    Get PDF
    This paper presents findings from a collaborative evaluation project within a masters programme in professional education. The project aimed to increase knowledge of research methodologies and methods through authentic learning where participants worked in partnership with the tutor to evaluate the module which they were studying. The project processes, areas of the course evaluated and the data collection methods are outlined. The findings focus on key themes from evaluating the effectiveness of using a collaborative evaluation approach, including: enhanced student engagement; creativity of the collaborative evaluation approach; equality between the tutor and students; and enhanced research skills. Discussion focuses on the outcomes and effectiveness of the project and tutor reflections on adopting a collaborative approach. This paper highlights lessons from the project relevant to those interested in staff-student partnership approaches and those facilitating postgraduate learning and teaching programmes and educational research courses

    microRNA-184 induces a commitment switch to epidermal differentiation

    Get PDF
    miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis

    Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions

    Full text link
    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly correlated "instantaneous" emission of up to four electrons is triggered by a recollisional electron impact, whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a major role. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure

    Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions

    Get PDF
    Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease

    Propensity-matched analysis of patient-reported outcomes for neoadjuvant chemotherapy prior to radical cystectomy

    Get PDF
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: To evaluate patient-reported outcomes (PROs) for bladder cancer patients undergoing neoadjuvant chemotherapy (NAC) prior to radical cystectomy (RC) using longitudinal data and propensity-matched scoring analyses. Methods: 155 patients with muscle-invasive bladder cancer scheduled for RC completed the European Organization for Research and Treatment of Cancer questionnaires, EORTC QLQ-C30, EORTC QLQ-BLM30, Fear of Recurrence Scale, Mental Health Inventory and Satisfaction with Life Scale within 4 weeks of surgery. A propensity-matched analysis was performed comparing pre-surgery PROs among 101 patients who completed NAC versus 54 patients who did not receive NAC. We also compared PROs pre- and post-chemotherapy for 16 patients who had data available for both time points. Results: In propensity-matched analysis, NAC-treated patients reported better emotional and sexual function, mental health, urinary function and fewer financial concerns compared to those that did not receive NAC. Longitudinal analysis showed increases in fatigue, nausea and appetite loss following chemotherapy. Conclusion: Propensity-matched analysis did not demonstrate a negative effect of NAC on PRO. Several positive associations of NAC were found in the propensity-matched analysis, possibly due to other confounding differences between the two groups or actual clinical benefit. Longitudinal analysis of a small number of patients found small to modest detrimental effects from NAC similar to toxicities previously reported. Our preliminary findings, along with known survival and toxicity data, should be considered in decision-making for NAC

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
    • 

    corecore