93 research outputs found

    Soil carbon investigation in three pedoclimatic and agronomic settings of northern Italy

    Get PDF
    Sustainable agricultural management is needed to promote carbon (C) sequestration in soil, prevent loss of soil fertility, and reduce the release of greenhouse gases. However, the influence of agronomic practices on soil C sequestration depends on the existing pedoclimatic features. We characterized the soils of three farms far away each other in the Emilia-Romagna region (Northern Italy): an organic farm in the Northern Apennines, a biodynamic farm, and a conventional farm on the Po Plain. The total, inorganic, and organic carbon in soil, as well as the distinct humic fractions were investigated, analyzing both the elemental and isotopic (13C/12C) composition. In soils, organic matter appears to be variously affected by mineralization processes induced by microorganisms that consume organic carbon. In particular, organic carbon declined in farms located in the plain (e.g., organic carbon down to 0.75 wt%; carbon stock0-30 cm down to 33 Mg/ha), because of the warmer climate and moderately alkaline environment that enhance soil microbial activity. On the other hand, at the mountain farm, the minimum soil disturbance, the cold climate, and the neutral conditions favored soil C sequestration (organic carbon up to 4.42 wt%; carbon stock0-30 cm up to 160 Mg/ha) in humified organic compounds with long turnover, which can limit greenhouse gas emissions into the atmosphere. This work shows the need for thorough soil investigations, to propose tailored best-practices that can reconcile productivity and soil sustainability

    Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound

    Get PDF
    Isohomohalichondrin B (IHB), a novel marine compound with anti-tumoral activity, extracted from the Lissodendorix sponge, inhibits GTP binding to tubulin, preventing microtubule assembly. Cell cycle perturbations and apoptosis induced by IHB were investigated on selected human cancer cell lines by using flow cytometric and biochemical techniques. Monoparameter flow cytometric analysis showed that 1 h IHB exposure caused a delayed progression through S-phase, a dramatic block in G2M phase of the cell cycle and the appearance of tetraploid cell population in LoVo, LoVo/DX, MOLT-4 and K562 cells. At 24 h after IHB exposure, the majority of cells blocked in G2M were in prophase as assessed by morphological analysis and by the fact that they expressed high levels of cyclin A/cdc2 and cyclin B1/cdc2. At 48 h, all cells were tetraploid as assessed by biparameter cyclin A/DNA and cyclin B1/DNA content analysis. Apoptotic death was detected in both leukaemic MOLT-4 and K562 cells, which express wild-type and mutated p53 respectively, when the cells were blocked in mitotic prophase. In conclusion, IHB is a novel potent anti-tumour drug that causes delayed S-phase progression, mitotic block, tetraploidy and apoptosis in cancer cell lines. © 1999 Cancer Research Campaig

    NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    Get PDF
    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy

    Adherence to antibiotic treatment guidelines and outcomes in the hospitalized elderly with different types of pneumonia

    Get PDF
    Background: Few studies evaluated the clinical outcomes of Community Acquired Pneumonia (CAP), Hospital-Acquired Pneumonia (HAP) and Health Care-Associated Pneumonia (HCAP) in relation to the adherence of antibiotic treatment to the guidelines of the Infectious Diseases Society of America (IDSA) and the American Thoracic Society (ATS) in hospitalized elderly people (65 years or older). Methods: Data were obtained from REPOSI, a prospective registry held in 87 Italian internal medicine and geriatric wards. Patients with a diagnosis of pneumonia (ICD-9 480-487) or prescribed with an antibiotic for pneumonia as indication were selected. The empirical antibiotic regimen was defined to be adherent to guidelines if concordant with the treatment regimens recommended by IDSA/ATS for CAP, HAP, and HCAP. Outcomes were assessed by logistic regression models. Results: A diagnosis of pneumonia was made in 317 patients. Only 38.8% of them received an empirical antibiotic regimen that was adherent to guidelines. However, no significant association was found between adherence to guidelines and outcomes. Having HAP, older age, and higher CIRS severity index were the main factors associated with in-hospital mortality. Conclusions: The adherence to antibiotic treatment guidelines was poor, particularly for HAP and HCAP, suggesting the need for more adherence to the optimal management of antibiotics in the elderly with pneumonia

    Frequency of left ventricular hypertrophy in non-valvular atrial fibrillation

    Get PDF
    Left ventricular hypertrophy (LVH) is significantly related to adverse clinical outcomes in patients at high risk of cardiovascular events. In patients with atrial fibrillation (AF), data on LVH, that is, prevalence and determinants, are inconsistent mainly because of different definitions and heterogeneity of study populations. We determined echocardiographic-based LVH prevalence and clinical factors independently associated with its development in a prospective cohort of patients with non-valvular (NV) AF. From the "Atrial Fibrillation Registry for Ankle-brachial Index Prevalence Assessment: Collaborative Italian Study" (ARAPACIS) population, 1,184 patients with NVAF (mean age 72 \ub1 11 years; 56% men) with complete data to define LVH were selected. ARAPACIS is a multicenter, observational, prospective, longitudinal on-going study designed to estimate prevalence of peripheral artery disease in patients with NVAF. We found a high prevalence of LVH (52%) in patients with NVAF. Compared to those without LVH, patients with AF with LVH were older and had a higher prevalence of hypertension, diabetes, and previous myocardial infarction (MI). A higher prevalence of ankle-brachial index 640.90 was seen in patients with LVH (22 vs 17%, p = 0.0392). Patients with LVH were at significantly higher thromboembolic risk, with CHA2DS2-VASc 652 seen in 93% of LVH and in 73% of patients without LVH (p <0.05). Women with LVH had a higher prevalence of concentric hypertrophy than men (46% vs 29%, p = 0.0003). Logistic regression analysis demonstrated that female gender (odds ratio [OR] 2.80, p <0.0001), age (OR 1.03 per year, p <0.001), hypertension (OR 2.30, p <0.001), diabetes (OR 1.62, p = 0.004), and previous MI (OR 1.96, p = 0.001) were independently associated with LVH. In conclusion, patients with NVAF have a high prevalence of LVH, which is related to female gender, older age, hypertension, and previous MI. These patients are at high thromboembolic risk and deserve a holistic approach to cardiovascular prevention

    Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite

    No full text
    Selenium (Se) is a trace element necessary for both human and livestock nutrition. To increase Se human intake, soil Se fertilizations were performed but the fate of the added Se remains unclear. The present research aims to: (1) determine the influence of Se fertilization on the fractionation of Se in soil; (2) assess the influence of water availability on the distribution of soil Se chemical fractions; and (3) monitor the Se content in soil, leachates and plants. To reach these goals, 200 g Se ha−1 was applied to soil as sodium selenite in maize crops under two irrigation regimes, and the Se content in plant, soil chemical fractions and leachates were analyzed. Se application increased the total Se content of the soil, specifically it increased the Se content of the soluble, exchangeable and organic fractions with more pronounced effect in the soils with higher water availability. These differences disappeared over time likely due to the Se loss through volatilization. The hypothesis of Se volatilization is confirmed by the absence of both leachates during the maize growing season and differences among the treatments of Se content in sub-soil samples. Also, although the Se treated plants showed higher Se content than the untreated ones, overall 1% of the added Se was assimilated by plants. Hence, this study demonstrated that the addition of selenite to the soil increased the Se contents of the plants, but the Se does not accumulate in the soil because it is likely lost via volatilization. Further, leaching of Se into groundwater is avoided due to its association with both the soil organic matter and positively charged binding sites of soil, and due to its loss via volatilization. Therefore, soil Se fertilization could increase the nutritional value of plants without consequences on the environment

    Impact of Na-selenite fertilization on the microbial biomass and enzymes of a soil under corn (Zea mays L.) cultivation

    No full text
    We tested the over time effect of different selenium doses [50 (D50) and 100 (D100) g ha 121 of Se as Na2SeO3] on a soil under corn (Zea mays L.) cultivation. The soil was sampled 18 (t1), 48 (t2) and 59 (t3) days after the addition of Se and analysed for total Se, organic carbon and nitrogen, water-extractable organic carbon, available P, microbial biomass-C (Cmic) contents, the cumulative basal respiration (\u3a3CO2-C) and some enzymatic activities. Our findings showed Se fertilization increased the total soil Se content, although the differences between the treated and the untreated soils disappeared over time. Se fertilization had a negligible effect on the selected soil chemical and biochemical properties, with the exception of the \u3a3CO2-C, and fluorescein diacetate hydrolysis and dehydrogenase activity. Indeed, these parameters showed lower values at t3 in the treated than in the untreated soils without significant decrease of the Cmic suggesting a less energy demanded by the soil microorganisms for their own maintenance. This finding suggested a better adaptation of the microbial community to the modified conditions in the treated soils, where Se fertilization might have caused a shift in soil microbial community structure and/or promoted the survival of selected microorganisms. Overall, the obtained data highlighted that Se fertilization with Na-selenite, at the rate of 50 and 100 g ha 121, had no negative impact on soil chemical and biochemical parameters, at least on a short term
    • …
    corecore