1,664 research outputs found

    Electron capture rates in a plasma

    Full text link
    A new general expression is derived for nuclear electron capture rates within dense plasmas. Its qualitative nature leads us to question some widely accepted assumptions about how to calculate the effects of the plasma on the rates. A perturbative evaluation, though not directly applicable to the strongly interacting case, appears to bear out these suspicions.Comment: 9 page

    Spin-dependent Hedin's equations

    Full text link
    Hedin's equations for the electron self-energy and the vertex were originally derived for a many-electron system with Coulomb interaction. In recent years it has been increasingly recognized that spin interactions can play a major role in determining physical properties of systems such as nanoscale magnets or of interfaces and surfaces. We derive a generalized set of Hedin's equations for quantum many-body systems containing spin interactions, e.g. spin-orbit and spin-spin interactions. The corresponding spin-dependent GW approximation is constructed.Comment: 5 pages, 1 figur

    Effects of disorder on the vortex charge

    Full text link
    We study the influence of disorder on the vortex charge, both due to random pinning of the vortices and due to scattering off non-magnetic impurities. In the case when there are no impurities present, but the vortices are randomly distributed, the effect is very small, except when two or more vortices are close by. When impurities are present, they have a noticeable effect on the vortex charge. This, together with the effect of temperature, changes appreciably the vortex charge. In the case of an attractive impurity potential the sign of the charge naturally changes.Comment: 10 pages, 16 figures. Accepted in Phys. Rev.

    Energy spectrum and effective mass using a non-local 3-body interaction

    Full text link
    We recently proposed a nonlocal form for the 3-body induced interaction that is consistent with the Fock space representation of interaction operators but leads to a fractional power dependence on the density. Here we examine the implications of the nonlocality for the excitation spectrum. In the two-component weakly interacting Fermi gas, we find that it gives an effective mass that is comparable to the one in many-body perturbation theory. Applying the interaction to nuclear matter, it predicts a large enhancement to the effective mass. Since the saturation of nuclear matter is partly due to the induced 3-body interaction, fitted functionals should treat the effective mass as a free parameter, unless the two- and three-body contributions are determined from basic theory.Comment: 7 pages, 1 figure; V2 has a table showing the 3-body energies for two phenomenological energy-density functional

    Mechanism of d_{x^2-y^2}-wave superconductivity based on doped hole induced spin texture in high T_c cuprates

    Get PDF
    A mechanism of d_{x^2-y^2}-wave superconductivity is proposed for the high-T_c cuprates based on a spin texture with non-zero topological density induced by doped holes through Zhang-Rice singlet formation. The pairing interaction arises from the magnetic Lorentz force like interaction between the holes and the spin textures. The stability of the pairing state against the vortex-vortex interaction and the Coulomb repulsion is examined. The mechanism suggests appearance of a p-wave pairing component by introducing anisotropy in the CuO_2 plane.Comment: 9 pages, 3 figures; added references, corrected minor error

    Spin-triplet pairing in large nuclei

    Full text link
    The nuclear pairing condensate is expected to change character from spin-singlet to spin-triplet when the nucleus is very large and the neutron and proton numbers Z,NZ,N are equal. We investigate the transition between these two phases within the framework of the Hartree-Fock-Bogoliubov equations, using a zero-range interaction to generate the pairing. We confirm that extremely large nucleus would indeed favor triplet pairing condensates, with the Hamiltonian parameters taken from known systematics. The favored phase is found to depend on the specific orbitals at the Fermi energy. The smallest nuclei with a well-developed spin-triplet condensate are in the mass region A ~ 130-140.Comment: 8 pages, 2 figures, 2 table

    Coupling of hydrodynamics and quasiparticle motion in collective modes of superfluid trapped Fermi gases

    Full text link
    At finite temperature, the hydrodynamic collective modes of superfluid trapped Fermi gases are coupled to the motion of the normal component, which in the BCS limit behaves like a collisionless normal Fermi gas. The coupling between the superfluid and the normal components is treated in the framework of a semiclassical transport theory for the quasiparticle distribution function, combined with a hydrodynamic equation for the collective motion of the superfluid component. We develop a numerical test-particle method for solving these equations in the linear response regime. As a first application we study the temperature dependence of the collective quadrupole mode of a Fermi gas in a spherical trap. The coupling between the superfluid collective motion and the quasiparticles leads to a rather strong damping of the hydrodynamic mode already at very low temperatures. At higher temperatures the spectrum has a two-peak structure, the second peak corresponding to the quadrupole mode in the normal phase.Comment: 14 pages; v2: major changes (effect of Hartree field included

    The s-wave pion-nucleus optical potential

    Get PDF
    We calculate the s-wave part of the pion-nucleus optical potential using a unitarized chiral approach that has been previously used to simultaneously describe pionic hydrogen and deuterium data as well as low energy pi N scattering in the vacuum. This energy dependent model allows for additional isoscalar parts in the potential from multiple rescattering. We consider Pauli blocking and pion polarization in an asymmetric nuclear matter environment. Also, higher order corrections of the pi N amplitude are included. The model can accommodate the repulsion required by phenomenological fits, though the theoretical uncertainties are bigger than previously thought. At the same time, we also find an enhancement of the isovector part compatible with empirical determinations.Comment: 31 pages, 27 figure

    Functional medium-dependence of the nonrelativistic optical model potential

    Full text link
    By examining the structure in momentum and coordinate space of a two-body interaction spherically symmetric in its local coordinate, we demonstrate that it can be disentangled into two distinctive contributions. One of them is a medium-independent and momentum-conserving term, whereas the other is functionally --and exclusively-- proportional to the radial derivative of the reduced matrix element. As example, this exact result was applied to the unabridged optical potential in momentum space, leading to an explicit separation between the medium-free and medium-dependent contributions. The latter does not depend on the strength of the reduced effective interaction but only on its variations with respect to the density. The modulation of radial derivatives of the density enhances the effect in the surface and suppresses it in the saturated volume. The generality of this result may prove to be useful for the study of surface-sensitive phenomena.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Dynamical quark recombination in ultrarelativistic heavy-ion collisions and the proton to pion ratio

    Full text link
    We study quark thermal recombination as a function of energy density during the evolution of a heavy-ion collision in a numerical model that reproduces aspects of QCD phenomenology. We show that starting with a set of free quarks (or quarks and antiquarks) the probability to form colorless clusters of three quarks differs from that to form colorless clusters of quark-antiquark and that the former has a sharp jump at a critical energy density whereas the latter transits smoothly from the low to the high energy density domains. We interpret this as a quantitative difference in the production of baryons and mesons with energy density. We use this approach to compute the proton and pion spectra in a Bjorken scenario that incorporates the evolution of these probabilities with energy density, and therefore with proper time. From the spectra, we compute the proton to pion ratio and compare to data at the highest RHIC energies. We show that for a standard choice of parameters, this ratio reaches one, though the maximum is very sensitive to the initial evolution proper time.Comment: 10 pages, 12 figures, version to appear in Phys. Rev.
    corecore