339 research outputs found

    Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre

    Get PDF
    We present high-resolution spectroscopy of Iodine vapour that is loaded and trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We compare the observed spectroscopic features to those seen in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ~6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.Comment: 12 pages, 7 figure

    A Test Resonator for Kagome Hollow-Core Photonic Crystal Fibers for Resonant Rotation Sensing

    Full text link
    We build ring resonators to assess the potentialities of Kagome Hollow-Core Photonic Crystal Fibers for future applications to resonant rotation sensing. The large mode diameter of Kagome fibers permits to reduce the free space fiber-to-fiber coupling losses, leading to cavities with finesses of about 30 for a diameter equal to 15 cm. Resonance linewidths of 3.2~MHz with contrasts as large as 89\% are obtained. Comparison with 7-cell photonic band gap (PBG) fiber leads to better finesse and contrast with Kagome fiber. Resonators based on such fibers are compatible with the angular random walk required for medium to high performance rotation sensing. The small amount of light propagating in silica should also permit to further reduce the Kerr-induced non-reciprocity by at least three orders of magnitudes in 7-cell Kagome fiber compared with 7-cell PBG fiber

    Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber

    Get PDF
    We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of [superscript]12C[subscript]2H[subscript]2 inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10[superscript]−12 at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator

    Picometer resolution profilometer for hollow-core fiber surface roughness characterization

    Get PDF
    We build a picometer-sensitivity optical surface-profiler based on polarization-interferometry. The profilometer is design to measure surface roughness profiles of HCPCF. Two HCPCF categories with different fabrication processes were characterized. We observe that for HCPCFs fabricated the new process exhibit a reduction of rms core-surface roughness rms by a factor of close to 3 relative to the surface capillary wave thermodynamic limit, and thus explaining the record loss achieved in the VIS-UV range achieved with these fibers

    Hollow-Core Fiber-Based Biosensor: A Platform for Lab-in-Fiber Optical Biosensors for DNA Detection

    Get PDF
    In this paper, a novel platform for lab-in-fiber-based biosensors is studied. Hollow-core tube lattice fibers (HC-TLFs) are proposed as a label-free biosensor for the detection of DNA molecules. The particular light-guiding mechanism makes them a highly sensitive tool. Their transmission spectrum is featured by alternations of high and low transmittance at wavelength regions whose values depend on the thickness of the microstructured web composing the cladding around the hollow core. In order to achieve DNA detection by using these fibers, an internal chemical functionalization process of the fiber has been performed in five steps in order to link specific peptide nucleic acid (PNA) probes, then the functionalized fiber was used for a three-step assay. When a solution containing a particular DNA sequence is made to flow through the HC of the TLF in an 'optofluidic' format, a bio-layer is formed on the cladding surfaces causing a red-shift of the fiber transmission spectrum. By comparing the fiber transmission spectra before and after the flowing it is possible to identify the eventual formation of the layer and, therefore, the presence or not of a particular DNA sequence in the solution

    Stimulated Raman scattering with large Raman shifts with liquid core Kagome fibers (Orale)

    No full text
    International audienceStimulated Raman scattering in photonic band gap liquid filled fibers is known to be an attractive technique for manufacturing efficient wavelength converters. However the possible frequency shifts are limited by the spectral bandwidth of these fibers. We experimentally demonstrate that Kagome fibers allow to greatly enlarge these shifts

    Efficient Spectral Broadening in the 100-W Average Power Regime Using Gas Filled Kagome HC-PCF and Pulse Compression

    Full text link
    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core Kagome Hollow-Core Photonic Crystal Fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a Kagome HC-PCF containing 13 bar of static Argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100 W of average power and >100 MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100 MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance

    Hollow-core fiber-based speckle displacement sensor

    Full text link
    The research enterprise towards achieving high-performance hollow-core photonic crystal fibers has led to impressive advancements in the latest years. Indeed, using this family of fibers becomes nowadays an overarching strategy for building a multitude of optical systems ranging from beam delivery devices to optical sources and sensors. In most applications, an effective single-mode operation is desired and, as such, the fiber microstructure or the light launching setups are typically designed for achieving such a behavior. Alternatively, one can identify the use of large-core multimode hollow-core fibers as a promising avenue for the development of new photonic devices. Thus, in this manuscript, we propose and demonstrate the utilization of a large-core tubular-lattice fiber for accomplishing a speckle-based displacement sensor, which has been built up by inserting and suitably dislocating a single-mode fiber inside the void core of the hollow fiber. The work reported herein encompasses both simulation and experimental studies on the evolution of the multimode intensity distributions within the device as well as the demonstration of a displacement sensor with an estimated resolution of 0.7 {\mu}m. We understand that this investigation identifies a new opportunity for the employment of large-core hollow fibers within the sensing framework hence widening the gamut of applications of this family of fibers

    Hollow-core fibers with reduced surface roughness and ultralow loss in the short-wavelength range

    Full text link
    While optical fibers display excellent performances in the infrared, visible and ultraviolet ranges remain poorly addressed by them. Obtaining better fibers for the short-wavelength range has been restricted, in all fiber optics, by scattering processes. In hollow-core fibers, the scattering loss arises from the core roughness and represents the limiting factor in reducing their loss regardless of the fiber cladding confinement power. To attain fibers performing at short wavelengths, it is paramount developing means to minimize the height variations on the fiber microstructure boundaries. Here, we report on the reduction of the core surface roughness of hollow-core fibers by modifying their fabrication technique. In the novel process proposed herein, counter directional gas fluxes are applied within the fiber holes during fabrication to attain an increased shear rate on its microstructure. The effect of the process on the surface roughness has been quantified by optical profilometry and the results showed that the root-mean-square surface roughness has been reduced from 0.40 nm to 0.15 nm. The improvement in the fiber core surface quality entailed fibers with ultralow loss in the short-wavelength range. We report on fibers with record loss values as low as 50 dB/km at 290 nm, 9.7 dB/km at 369 nm, 5.0 dB/km at 480 nm, and 1.8 dB/km at 719 nm. The results reveal this new approach as a promising path for the development of hollow-core fibers guiding at short wavelengths with loss that can potentially be orders of magnitude lower than the ones achievable with their silica-core counterparts

    All-fiber broadband spectral acousto-optic modulation of a tubular-lattice hollow-core optical fiber

    Full text link
    We demonstrate a broadband acousto-optic notch filter based on a tubular-lattice hollow-core fiber for the first time. The guided optical modes are modulated by acoustically induced dynamic long-period gratings along the fiber. The device is fabricated employing a short interaction length (7.7 cm) and low drive voltages (10 V). Modulated spectral bands with 20 nm half-width and maximum depths greater than 60 % are achieved. The resonant notch wavelength is tuned from 743 to 1355 nm (612 nm span) by changing the frequency of the electrical signal. The results indicate a broader tuning range compared to previous studies using standard and hollow-core fibers. It further reveals unique properties for reconfigurable spectral filters and fiber lasers, pointing to the fast switching and highly efficient modulation of all-fiber photonic devices
    • …
    corecore