Picometer resolution profilometer for hollow-core fiber surface roughness characterization

A. Dhaybi¹, K. Vasko¹, J. Osorio¹, F. Amrani^{1,2}, B. Debord^{1,2}, F. Gérôme^{1,2}, and F. Benabid^{1,2} ¹ GPPMM group, Xlim Research Institute, CNRS UMR 7252, Université de Limoges, 87060 Limoges, France ² GLOphotonics SAS, 123 avenue Albert Thomas, 87060 Limoges Cedex, France

Gas-Phase Photonic Microwave Materials

Abstract: We build a picometer-sensitivity optical surface-profiler based on polarization-interferometry. The profilometer is design to measure surface roughness profiles of HCPCF. Two HCPCF categories with different fabrication processes were characterized. We observe that for HCPCFs fabricated the new process exhibit a reduction of rms core-surface roughness rms by a factor of close to 3 relative to the surface capillary wave thermodynamic limit, and thus explaining the record loss achieved in the VIS-UV range achieved with these fibers.

 \mathcal{V}_f

Today the performance of the transmission of hollow fibers is limited by the surface scattering

Optical profilometer

Measuring the difference of height by measuring the phase shift between the two beams reflected on the sample [3].

HCPCF surface roughness measurments

Tube diameter

Tube thickness

