169 research outputs found
Disgust trumps lust:women’s disgust and attraction towards men is unaffected by sexual arousal
Mating is a double-edged sword. It can have great adaptive benefits, but also high costs, depending on the mate. Disgust is an avoidance reaction that serves the function of discouraging costly mating decisions, for example if the risk of pathogen transmission is high. It should, however, be temporarily inhibited in order to enable potentially adaptive mating. We therefore tested the hypothesis that sexual arousal inhibits disgust if a partner is attractive, but not if he is unattractive or shows signs of disease. In an online experiment, women rated their disgust towards anticipated behaviors with men depicted on photographs. Participants did so in a sexually aroused state and in a control state. The faces varied in attractiveness and the presence of disease cues (blemishes). We found that disease cues and attractiveness, but not sexual arousal, influenced disgust. The results suggest that women feel disgust at sexual contact with unattractive or diseased men independently of their sexual arousal
Sparse Matrix-Based HPC Tomography
Tomographic imaging has benefited from advances in X-ray sources, detectors
and optics to enable novel observations in science, engineering and medicine.
These advances have come with a dramatic increase of input data in the form of
faster frame rates, larger fields of view or higher resolution, so high
performance solutions are currently widely used for analysis. Tomographic
instruments can vary significantly from one to another, including the hardware
employed for reconstruction: from single CPU workstations to large scale hybrid
CPU/GPU supercomputers. Flexibility on the software interfaces and
reconstruction engines are also highly valued to allow for easy development and
prototyping. This paper presents a novel software framework for tomographic
analysis that tackles all aforementioned requirements. The proposed solution
capitalizes on the increased performance of sparse matrix-vector multiplication
and exploits multi-CPU and GPU reconstruction over MPI. The solution is
implemented in Python and relies on CuPy for fast GPU operators and CUDA kernel
integration, and on SciPy for CPU sparse matrix computation. As opposed to
previous tomography solutions that are tailor-made for specific use cases or
hardware, the proposed software is designed to provide flexible, portable and
high-performance operators that can be used for continuous integration at
different production environments, but also for prototyping new experimental
settings or for algorithmic development. The experimental results demonstrate
how our implementation can even outperform state-of-the-art software packages
used at advanced X-ray sources worldwide
Recommended from our members
Motives and comprehension in a public goods game with induced emotions
This study analyses the sensitivity of public goods contributions through the lens of psychological motives. We report the results of a public goods experiment in which subjects were induced with the motives of care and anger through autobiographical recall. Subjects' preferences, beliefs, and perceptions under each motive are compared with those of subjects experiencing a neutral autobiographical recall control condition. We find, but only for those subjects with the highest comprehension of the game, that care elicits significantly higher contributions than anger, with the control treatment in between. This positive influence of the care motive on unconditional giving is accounted for partly by preferences for giving and partly by the beliefs concerning greater contributions by others. Anger also affects attention to own and other's payoffs (using mouse tracking) and perceptions of the game's incentive structure (cooperative or competitive)
Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis
Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes
B-cell-specific checkpoint molecules that regulate anti-tumour immunity.
The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth
Menstrual Cycle and Facial Preferences Reconsidered
Two previous articles reported that women prefer less feminized male faces during the fertile phase of their menstrual cycle, supposedly reflecting an evolved mating strategy whereby women choose mates of maximum genetic quality when conception is likely. The current article contends this theory rests on several questionable assumptions about human ancestral mating systems. A new empirical test also was conducted: 853 adults, primarily from North America, evaluated facial attractiveness of photos. The study included more complete evaluation of ovulatory status and a greater number (n = 258) of target women than past research. The results did not suggest any greater preference for masculine faces when fertilization was likely. The article concludes with general comments about evolutionary theorizing and interpersonal relationships
Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release
Mycobacterium abscessus has emerged as an important cause of lung infection, particularly in patients with bronchiectasis. Innate immune responses must be highly effective at preventing infection with M. abscessus because it is a ubiquitous environmental saprophyte and normal hosts are not commonly infected. M. abscessus exists as either a glycopeptidolipid (GPL) expressing variant (smooth phenotype) in which GPL masks underlying bioactive cell wall lipids, or as a variant lacking GPL which is immunostimulatory and invasive in macrophage infection models. Respiratory epithelium has been increasingly recognized as playing an important role in the innate immune response to pulmonary pathogens. Respiratory epithelial cells express toll-like receptors (TLRs) which mediate the innate immune response to pulmonary pathogens. Both interleukin-8 (IL-8) and human β-defensin 2 (HβD2) are expressed by respiratory epithelial cells in response to toll-like receptor 2 (TLR2) receptor stimulation. In this study, we demonstrate that respiratory epithelial cells respond to M. abscessus variants lacking GPL with expression of IL-8 and HβD2. Furthermore, we demonstrate that this interaction is mediated through TLR2. Conversely, M. abscessus expressing GPL does not stimulate expression of IL-8 or HβD2 by respiratory epithelial cells which is consistent with “masking” of underlying bioactive cell wall lipids by GPL. Because GPL-expressing smooth variants are the predominant phenotype existing in the environment, this provides an explanation whereby initial M. abscessus colonization of abnormal lung airways escapes detection by the innate immune system
Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy
<p>Abstract</p> <p>Background</p> <p>Breast cancer stem cells (BCSCs) are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs).</p> <p>Methods</p> <p>We isolated a breast cancer cell population (CD44<sup>+</sup>CD24<sup>- </sup>cells) from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44<sup>+</sup>CD24<sup>- </sup>phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs.</p> <p>Results</p> <p>Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs.</p> <p>Conclusions</p> <p>Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.</p
The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle-aged female rats
Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response
Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+
Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response
- …
