163 research outputs found

    Setting a standard for low reading proficiency. A comparison of the bookmark procedure and constrained mixture Rasch model

    Get PDF
    In order to draw pertinent conclusions about persons with low reading skills, it is essential to use validated standard-setting procedures by which they can be assigned to their appropriate level of proficiency. Since there is no standard-setting procedure without weaknesses, external validity studies are essential. Traditionally, studies have assessed validity by comparing different judgement-based standard-setting procedures. Only a few studies have used model-based approaches for validating judgement-based procedures. The present study addressed this shortcoming and compared agreement of the cut score placement between a judgement-based approach (i.e., Bookmark procedure) and a model-based one (i.e., constrained mixture Rasch model). This was performed by differentiating between individuals with low reading proficiency and those with a functional level of reading proficiency in three independent samples of the German National Educational Panel Study that included students from the ninth grade (N = 13,897) as well as adults (Ns = 5,335 and 3,145). The analyses showed quite similar mean cut scores for the two standard-setting procedures in two of the samples, whereas the third sample showed more pronounced differences. Importantly, these findings demonstrate that model-based approaches provide a valid and resource-efficient alternative for external validation, although they can be sensitive to the ability distribution within a sample. (DIPF/Orig.

    Changes in seabed morphology, mud temperature and free gas venting at the H ̊akon Mosby mud volcano, offshore northern Norway, over the time period 2003-2006

    Get PDF
    The HAyenkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage

    Gas hydrate distribution and hydrocarbon maturation north of the Knipovich Ridge, western Svalbard margin

    Get PDF
    A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially

    Fluid dynamics and slope stability offshore W-Spitsbergen: Effect of bottom water warming on gas hydrates and slope stability - Cruise No. MSM21/4 - August 12 - September 11, 2012 - Reykjavik (Iceland) - Emden (Germany)

    Get PDF
    The main goal of MSM21/4 was the study of gas hydrate system off Svalbard. We addressed this through a comprehensive scientific programme comprising dives with the manned submersible JAGO, seismic and heat flow measurements, sediment coring, water column biogeochemistry and bathymetric mapping. At the interception of the Knipovich Ridge and the continental margin of Svalbard we collected seismic data and four heat flow measurements. These measurements revealed that the extent of hydrates is significantly larger than previously thought and that the gas hydrate system is influenced by heat from the oceanic spreading centre, which may promote thermogenic methane production and thus explain the large extent of hydrates. At the landward termination of the hydrate stability zone we investigated the mechanisms that lead to degassing by taking sediment cores, sampling of carbonates during dives, and measuring the methane turn-over rates in the water column. It turned out that the observed gas seepage must have been ongoing for a long time and that decadal scale warming is an unlikely explanation for the observed seeps. Instead seasonal variations in water temperatures seem to control episodic hydrate formation and dissociation explaining the location of the observed seeps. The water column above the gas flares is rich in methane and methanotrophic microorganisms turning over most of the methane that escapes from the sea floor. We also surveyed large, until then uncharted parts of the margin in the northern part of the gas hydrate province. Here, we discovered an almost 40 km wide submarine landslide complex. This slide is unusual in the sense that it is not located at the mouth of a cross shelf trough such as other submarine landslides on the glaciated continental margins around the North Atlantic. Thus, the most widely accepted explanation for the origin of such slides, i.e. overpressure development due to deposition of glacial sediments on top of water rich contourites, is not applicable. Instead we find gas-hydrate-related bottom simulating reflectors underneath the headwalls of this slide complex, possibly indicating that subsurface fluid migration plays a major role in its genesis
    corecore