6 research outputs found

    Long-lived quantum memory enabling atom-photon entanglement over 101 km telecom fiber

    Full text link
    Long-distance entanglement distribution is the key task for quantum networks, enabling applications such as secure communication and distributed quantum computing. Here we report on novel developments extending the reach for sharing entanglement between a single 87^{87}Rb atom and a single photon over long optical fibers. To maintain a high fidelity during the long flight times through such fibers, the coherence time of the single atom is prolonged to 7 ms by applying a long-lived qubit encoding. In addition, the attenuation in the fibers is minimized by converting the photon's wavelength to the telecom S-Band via polarization-preserving quantum frequency conversion. This enables to observe entanglement between the atomic quantum memory and the emitted photon after passing 101 km of optical fiber with a fidelity better than 70.8±\pm2.4%. The fidelity, however, is no longer reduced due to loss of coherence of the atom or photon but in the current setup rather due to detector dark counts, showing the suitability of our platform to realize city-to-city scale quantum network links.Comment: 11 pages, 8 figures, comments are welcom

    Entangling single atoms over 33 km telecom fibre

    Get PDF
    Quantum networks promise to provide the infrastructure for many disruptive applications, such as efcient long-distance quantum communication and distributed quantum computing1,2 . Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation3,4 and loophole-free tests of Bell’s inequality5,6 , recently, entanglement distribution has also been achieved over telecom fbres and analysed retrospectively7,8 . Yet, to fully use entanglement over long-distance quantum network links it is mandatory to know it is available at the nodes before the entangled state decays. Here we demonstrate heralded entanglement between two independently trapped single rubidium atoms generated over fbre links with a length up to 33 km. For this, we generate atom–photon entanglement in two nodes located in buildings 400 m line-of-sight apart and to overcome high-attenuation losses in the fbres convert the photons to telecom wavelength using polarization-preserving quantum frequency conversion9 . The long fbres guide the photons to a Bell-state measurement setup in which a successful photonic projection measurement heralds the entanglement of the atoms10. Our results show the feasibility of entanglement distribution over telecom fbre links useful, for example, for device-independent quantum key distribution11–13 and quantum repeater protocols. The presented work represents an important step towards the realization of large-scale quantum network links
    corecore