546 research outputs found

    Skyrme and Wigner crystals in graphene

    Full text link
    At low-energy, the band structure of graphene can be approximated by two degenerate valleys (K,K)(K,K^{\prime}) about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the AA and BB sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the B(A)B(A) sublattice for the % K(K^{\prime}) valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals \textit{i.e.} crystals with no pseudospin texture in some range of filling factor ν\nu around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly-dispersing Goldstone modes in addition to the usual phonon mode while a Wigner crystal has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.Comment: 14 pages with 11 figure

    Power-law Kohn anomaly in undoped graphene induced by Coulomb interactions

    Get PDF
    Phonon dispersions generically display nonanalytic points, known as Kohn anomalies, due to electron-phonon interactions. We analyze this phenomenon for a zone-boundary phonon in undoped graphene. When electron-electron interactions with coupling constant \beta are taken into account, one observes behavior demonstrating that the electrons are in a critical phase: the phonon dispersion and lifetime develop power-law behavior with \beta-dependent exponents. The observation of this signature would allow experimental access to the critical properties of the electron state, and would provide a measure of its proximity to an excitonic insulating phase

    Interference between independent fluctuating condensates

    Full text link
    We consider a problem of interference between two independent condensates, which lack true long range order. We show that their interference pattern contains information about correlation functions within each condensate. As an example we analyze the interference between a pair of one dimensional interacting Bose liquids. We find universal scaling of the average fringe contrast with system size and temperature that depends only on the Luttinger parameter. Moreover the full distribution of the fringe contrast, which is also equivalent to the full counting statistics of the interfering atoms, changes with interaction strength and lends information on high order correlation functions. We also demonstrate that the interference between two-dimensional condensates at finite temperature can be used as a direct probe of the Kosterlitz-Thouless transition. Finally, we discuss generalization of our results to describe the intereference of a periodic array of independent fluctuating condensates.Comment: 7 pages, 3 figures, published versio

    Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets

    Full text link
    The two-dimensional electron gas in a bilayer quantum Hall system can sustain an interlayer coherence at filling factor nu=1 even in the absence of tunneling between the layers. This system has low-energy charged excitations which may carry textures in real spin or pseudospin. Away from filling factor nu =1 a finite density of these is present in the ground state of the 2DEG and forms a crystal. Depending on the relative size of the various energy scales, such as tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b), these textured crystal states can involve spin, pseudospin, or both intertwined. In this article, we present a comprehensive numerical study of the collective excitations of these textured crystals using the GRPA. For the pure spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a gapless phonon mode, and a separate Goldstone mode that arises from a broken U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent Skyrmions break up, and the resulting state is a meron crystal with 4 gapless modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3) Skyrmion crystal, we find a U(1) gapless mode in the presence of the symmetry-breaking fields. In addition, a second mode with a very small gap is present in the spectrum.Comment: 16 pages and 12 eps figure

    Bose-Condensed Gases in a 1D Optical Lattice at Finite Temperatures

    Full text link
    We study equilibrium properties of Bose-Condensed gases in a one-dimensional (1D) optical lattice at finite temperatures. We assume that an additional harmonic confinement is highly anisotropic, in which the confinement in the radial directions is much tighter than in the axial direction. We derive a quasi-1D model of the Gross-Pitaeavkill equation and the Bogoliubov equations, and numerically solve these equations to obtain the condensate fraction as a function of the temperature.Comment: Comments: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Theory of Activated Transport in Bilayer Quantum Hall Systems

    Full text link
    We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν=1\nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.Comment: 4 pages, 2 figure

    Signature of Quantum Hall Effect Skyrmions in Tunneling: A Theoretical Study

    Full text link
    We present a theoretical study of the IVI-V tunneling characteristic between two parallel two-dimensional electron gases in a perpendicular magnetic field when both are near filling factor ν=1\nu=1. Finite-size calculations of the single-layer spectral functions in the spherical geometry and analytical expressions for the disk geometry in the thermodynamic limit show that the current in the presence of skyrmions reflects in a direct way their underlying structure. It is also shown that fingerprints of the electron-electron interaction pseudopotentials are present in such a current.Comment: 4 pages, 1 figur

    Electron-Electron Interactions and the Hall-Insulator

    Full text link
    Using the Kubo formula, we show explicitly that a non-interacting electron system can not behave like a Hall-insulator, {\it ie.,} a DC resistivity matrix ρxx\rho_{xx}\rightarrow\infty and ρxy=\rho_{xy}=finite in the zero temperature limit, as has been observed recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by constructing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can approximately equal to its classical value. A Hall-insulator is realized in this model when the density of mobile electrons becomes vanishingly small. It is shown that in non-interacting electron systems, the zero-temperature frequency-dependent conductacnce generally does not give the DC conductance.Comment: 11 pages, RevTeX3.
    corecore