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Power-law Kohn anomaly in undoped graphene induced by Coulomb interactions
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Phonon dispersions generically display nonanalytic points, known as Kohn anomalies, due to electron-phonon
interactions. We analyze this phenomenon for a zone-boundary phonon in undoped graphene. When electron-
electron interactions with coupling constant β are taken into account, one observes behavior demonstrating that the
electrons are in a critical phase: the phonon dispersion and lifetime develop power-law behavior with β-dependent
exponents. The observation of this signature would allow experimental access to the critical properties of the
electron state, and would provide a measure of its proximity to an excitonic insulating phase.
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I. INTRODUCTION

The study of electron-electron interactions in graphene, a
monolayer of carbon,1 remains one of the most interesting
open problems in the field and is currently a very active
area of research.2 The Coulomb interaction plays a very
particular role in this system because its low-energy electronic
excitations are described by massless Dirac fermions. For
undoped graphene, the vanishing of the density of states at
the Fermi level implies that the interaction remains truly
long ranged, decaying in real space as 1/r , and this is
predicted to lead to a number of exotic interaction-induced
phenomena, such as logarithmic renormalization of many
physical observables at weak coupling2–4 and instabilities
toward different symmetry-breaking states, like the excitonic
insulator,5,6 at strong coupling. The strength of the Coulomb
interaction in graphene can be characterized by its bare
fine-structure constant β = e2/εvF , where vF is the Fermi
velocity and ε the dielectric constant. A naive estimate yields
β ≈ 2 for suspended graphene, while lower values are obtained
in the presence of a substrate. This suggests that Coulomb
interactions can be relatively important, but experimentally
their strength is still debated.7,8

One of the most striking predicted effects of the Coulomb
interaction in graphene is that, because the Hamiltonian
that describes it is scale invariant, some of its correlation
functions behave like power laws with interaction-dependent
exponents, so that the system is effectively in a critical
phase.9 This has also been shown recently by renormalization
group arguments.10,11 Similar power laws are also found in
Dirac fermion models with interactions mediated by effective
gauge fields.12,13 Unfortunately, most of the usual experimental
probes do not couple to the correlation functions that display
critical behavior, making their experimental observation chal-
lenging.

In this work, we show that a signature of this criticality may
be accessed experimentally through the dispersion relation
of a zone-boundary phonon, the A1 phonon at the K point.
The dispersion of this phonon is produced mainly by its
interaction with the Dirac electrons. Without electron-electron
interactions, it shows a square-root cusp at q = qK ≡ ωK/vF

(ωK the phonon frequency at the K point) that crosses
over to linear dispersion for q � qK , a feature known as a
Kohn anomaly. In this work, we demonstrate that when the
Coulomb interaction is included, the phonon dispersion is

modified strongly: around qK it becomes a power-law cusp
with exponent η(β), and for q � qK , it crosses over to another
power law with exponent η0(β). The observation of this strong
modification of the Kohn anomaly, in principle feasible with
current experimental techniques,14–16 would provide dramatic
evidence of the critical Coulomb interactions in this system,
and could potentially be used as a much needed measurement
of their strength β. This remarkable power-law Kohn anomaly
is similar to the one found in some one-dimensional systems.17

The presence of these power laws can be understood
in simple terms, while their detailed behavior requires an
elaborate calculation discussed below. Consider the usual
low-energy Hamiltonian for graphene around the K and K ′
points:

H = ivF

∫
d2r ψ†(αx∂x + αy∂y)ψ, (1)

with �α = (τzσx,σy), where the σ and τ matrices act on the
sublattice and valley degrees of freedom, respectively (spin
will be accounted for when necessary). The chemical potential
is set to zero. This Hamiltonian has an SU(2) valley symmetry
generated by the matrices Tn = (τxσy,τyσy,τz), in the sense
that the SU(2) rotation ψ → eiTnθnψ leaves the Hamiltonian
invariant. When the Coulomb interaction

Hint = e2

2

∫
d2r d2r ′ ψ

†
r ψrψ

†
r ′ψr ′

|r − r ′| (2)

is included, and for β greater than some critical value βc,
this system has an instability to an ordered state known as
the excitonic insulator,5,6 where charge imbalance between
sublattices, i.e., an expectation value of ψ†σzψ , develops.
This instability is reflected in the corresponding susceptibility
〈ψ†σzψψ†σzψ〉 at ω = 0, which develops a power law qη0

with an interaction-dependent exponent that goes to zero
for β → βc, signaling the onset of the excitonic phase.9,10

Therefore, power-law behavior in this correlator can be thought
of as the weak-coupling counterpart of the excitonic instability,
and experimental access to the exponent would allow one to
probe how close the system is to it. However, this particular
susceptibility is difficult to measure, as it requires a probe that
couples differently to the two sublattices.

The charge density wave (CDW) instability is, however,
not the only one that Coulomb interactions can induce.
The Hamiltonian (1) admits two other time-reversal-invariant
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masses τxσx and τyσx , and an instability that develops an
expectation value for either of them may proceed in the
same way. These order parameters correspond to a bond
density wave order known as the Kekulé distortion.18 It can be
shown that the Kekulé and CDW masses Mn = (τxσx,τyσx,σz)
transform like a spin-1/2 under the valley symmetry, and
since the Coulomb interaction does not break this symmetry,
the three instabilities are in fact equivalent: they have the
same weak-coupling power-law susceptibility with the same
exponents. Since, as we will see, the A1 electron-phonon vertex
corresponds to the Kekulé mass, the phonon self-energy is
proportional to the Kekulé susceptibility. Therefore, we expect
power-law behavior in the phonon dispersion and lifetime. To
see this, however, the computation of the full ω-dependent
susceptibility is required. In the remainder of this paper, we
discuss the electron-phonon coupling in graphene and the
computation of the phonon self-energies with the aim of
establishing precisely where the signatures of critical behavior
are to be found.

II. PHONONS AND KOHN ANOMALIES

The phonon spectrum of the honeycomb lattice consists of
six phonon branches, four in plane and two out of plane. Each
of these phonons may couple to electrons near either Dirac
point if it has momentum close to zero (a � point or zone-center
phonon), which scatters electrons within each valley, or if it has
momentum close to K or K ′ points (a zone-boundary phonon),
in which case it produces intervalley scattering. The strength
of the electron-phonon coupling (EPC), however, depends
on how the particular displacement pattern of that phonon
modifies the hopping integrals between atoms. Two modes
have displacements that produce a significant EPC. The first
of these is the phonon branch of highest energy at the � point,
the E2 phonon. The second is the A1 branch at the K and K ′
points (also the highest branch). This is a lattice distortion with
a supercell of six atoms, the displacement pattern of which is
obtained by taking linear combinations of the displacements
at K and K ′, and is shown in the inset of Fig 4. These two
combinations couple to electrons exactly in the same way as
the two components of the Kekulé distortion

He-ph,K = FK

∫
d2r ψ†(M1uK1 + M2uK2)ψ, (3)

with FK = 3∂t/∂a. For this reason, this phonon is also known
as the Kekulé phonon.19 The fact that the E2 and A1 phonons
are the most predominant is confirmed by Raman spectroscopy
in pristine graphene, where two main peaks are observed;20

the G peak corresponds to E2 phonons, while the 2D peak
is a second-order process involving two A1 phonons. The
Hamiltonian of the A1 phonon may be expressed as

H =
∑

i

∫
d2q

(2π )2
ωKb

†
i,qbi,q , (4)

with creation and destruction operators defined by

ui =
√

Ac

4ωKM

∫
d2q

(2π )2
(bi,qe

i �q�r + b
†
i,qe

−i �q�r ), (5)

where i = K1,K2, ωK ≈ 0.17 eV, Ac is the unit cell area.
For the range of momenta q < 0.25 Å−1 where the Dirac
fermion model is applicable,1 the dispersion of the phonon
can be neglected. Indeed, phonon band-structure computations
excluding the effect of electron-phonon coupling show a
practically flat dispersion21,22 in this range. A dimensionless
EPC can be defined as

λK = F 2
KAc

/(
2MωKv2

F

)
, (6)

which is estimated to be in the range λK ≈ 0.03–0.1.23,24

Due to electron-phonon interactions, phonon dispersion
relations are known to develop nonanalytic points, known
as Kohn anomalies, at the largest momenta for which the
generation of an electron-hole excitation is kinematically
allowed. This renormalization of the dispersion, as well as the
phonon lifetime, can be obtained from the phonon self-energy
�, which enters in the phonon Green’s function as

Gph(ω,q) = 2ωK

ω2 − ω2
K − 2ωK�(ω,q)

. (7)

As anticipated, this self-energy is related to the mass suscep-
tibility, which is defined as

�nm = 〈ψ†Mnψ ψ†Mmψ〉 (8)

because of the form of the coupling given in Eq. (3). The
explicit relation follows from the previous definitions and reads
as

� = λK

2
�11 = λK

2
�22. (9)

In the absence of electron-electron interactions, the self-energy
can be computed analytically, and it is given by24,25

�(ω,q) = λK

4

(
v2

F q2 − ω2
)1/2

. (10)

Solving for the pole in Eq. (7) for small λK , we see the
dispersion relation is corrected to

ω(q) ≈ ωK + λK

/
4
(
v2

F q2 − ω2
K

)1/2
, (11)

which has a square-root singularity at qK for q > qK . For q <

qK , the self-energy is purely imaginary, and a finite lifetime
is obtained. The Kohn anomaly is conventionally associated
with a linear cusp in the dispersion, which is obtained only
asymptotically for q � qK ; the full dynamical self-energy
should be used in general. Note that qK is approximately 2%
of the � − K distance in the Brillouin zone. The necessity
of employing the dynamical self-energy has been emphasized
before,26–28 in particular in the doped case where the static
approximation produces poor agreement with experiments.29

III. POWER-LAW MASS SUSCEPTIBILITY
AND PHONON DISPERSION

We will now proceed to compute the general ω- and q-
dependent mass susceptibility �nm including the Coulomb
interaction. We will see that it acquires β-dependent power-law
behavior, a feature that is thus inherited by the A1 phonon.
We will employ a ladder summation, as it is the simplest
approximation that will capture any nonanalytic behavior. The
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(a) (b)

FIG. 1. (a) Diagrammatic equation for the three-point vertex
(shaded triangle) in the ladder approximation. The cross denotes a
mass vertex. (b) Response function diagram.

ladder summation is represented diagrammatically in Fig. 1.
Denoting three-momenta q = (q0,�q ), one has

�nm(q) = 2i

∫
d3p

(2π )3
tr[MnG(p)�m(p,p + q)G(p + q)],

(12)

where the mass vertex �m is a 4 × 4 matrix (the sublat-
tice/valley index is omitted for clarity), and the factor of 2
accounts for spin. In the ladder approximation, �m satisfies
the self-consistent equation

�m(p,q) = Mm + ie2
∫

d3k

(2π )2

G(k)�m(k,q)G(k + q)

| �p − �k| ,

(13)

where (we set vF = 1 henceforth)

G(k) = k0 + �α�k
k2

0 − �k2 + iε
. (14)

To solve this set of equations, it is convenient to decompose �m

in a basis of 4 × 4 matrices with well-defined transformation
properties under the SU(2) valley symmetry. Defining M̃ =
τzσz, this basis may be taken as the four matrices M̃,I,αi ,
which are scalars under this symmetry, and the matrices
Mn,Tn,α

iTn, which transform like a spin 1/2. With this choice,
we express �m as

�m = �̃mM̃ + �̃0
mI + �̃i

mαi

+�nmMn + �0
nmTn + �i

nmαiTn. (15)

The equations are further simplified when �i
nm is expressed in

terms of its longitudinal and transverse parts

�L
nm = q̂ · ��nm, �T

nm = q̂ × ��nm, (16)

where q̂ = �q/q, and a similar relation applies for �̃i
nm. With

the identities

�k · ��nm = �k · q̂ �L
nm − �k × q̂ �T

nm, (17)

�k × ��nm = �k · q̂ �T
nm + �k × q̂ �L

nm, (18)

by substituting Eq. (15) into (12), and performing the trace,
we obtain

�nm(q) = i

∫
d3p

(2π )3

8

D

[
f11�nm + f12�

T
nm

+ �p × �q(
f13�

L
nm + f14�

0
nm

)]
, (19)

where we have defined the denominator

D(p,q) = [
p2

0 − �p2 + iε
]
[(p0 + q0)2 − ( �p + �q)2 + iε],

(20)

and where all fij ( �p,�q) (specified below) are even functions
under the reversal of the relative angle θ �p,�q = θp − θq . Because
of the decomposition in Eq. (15), the scalar parts decouple
completely and are not needed. We can then obtain equations
for the remaining components of �m by multiplying Eq. (13)
by the corresponding basis matrices and taking the trace. One
then obtains

�nm = δnm − iβ

∫
d3k

(2π )2

1

D

1

| �p − �k|
[
f11�nm + f12�

T
nm

+ �k × �q(
f13�

L
nm − f14�

0
nm

)]
, (21)

�T
nm = −iβ

∫
d3k

(2π )2

1

D

1

| �p − �k|
[
f21�nm + f22�

T
nm

+ �k × �q (
f23�

L
nm + f24�

0
nm

) ]
. (22)

�L
mn and �0

mn satisfy similar equations, but are not needed in
what follows. We now perform a circular harmonic expansion

�(np,nq ) =
∫

dθp

2π
einpθp

dθq

2π
einqθq �(p,q), (23)

and retain only the first-order contribution. Terms containing
�k × �q are odd and vanish. Thus, �L

n and �0
n completely

decouple to first order. Moreover, from the structure of
Eqs. (19), (21), and (22), it can be seen that in fact �nm =
δnm�. As expected, the Kekulé (�11 and �22) and CDW (�33)
response functions are the same.

With this simplification, the relevant components of fij are

f11 = −k0(k0 + q0) + �k(�k + �q ), (24)

f12 = f21 = i

(
q0�k�q

q
− k0q

)
, (25)

f22 = 2(�q × �k)2

q2
+ k0(k0 + q0) − �k(�k + �q ). (26)

Defining the dimensionless kernels

K
(n)
ij = i

π

∫
dθp

2π
eθpn

∫
dk0k

fij

D
(27)

and

C(n)(x) =
∫

dθk

2π

einθk

(1 + x2 + 2x cos θk)1/2
, (28)

the self-consistent equations to first order in the circular
harmonic expansion finally read as

�(0,0) = 1 + β

2p

∫
dk C(0)

(
K

(0)
11 �(0,0) + K

(0)
12 �

(0,0)
T

)
, (29)

�
(0,0)
T = − β

2p

∫
dk C(0)

(
K

(0)
21 �(0,0) + K

(0)
22 �

(0,0)
T

)
. (30)

A numerical analysis shows that the mixing kernel K12 is small
compared to K11 and may be neglected also. In this case, the
final equations determining the response function, spelling all
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FIG. 2. (Color online) Mass susceptibility ��(q0,q0 + δq) for
|δq| 
 qK and β = 0.36, real part (full line), and imaginary part
(dashed line).

momentum dependence, read as

�(0,0)(p,q)=1 + β

2p

∫ �

0
dk C(0)(k/p)K (0)

11 (k,q)�(0,0)(k,q),

(31)

�(q) = 2

π

∫ �

0
dp K

(0)
11 (p,q)�(0,0)(p,q), (32)

where � is an ultraviolet cutoff regularizing the integrals. Note
the product C(0)(k/p)K (0)

11 (k,q) goes as p/k for large k, so
the iteration of this equation produces a series of logarithms
characteristic of power-law behavior. Also, note that when
the external q < q0, all Kij develop an imaginary part for
(q0 − q)/2 < k < (q0 + q)/2.

We solve Eq. (31) numerically by discretizing the momen-
tum k on a logarithmic mesh and solving the corresponding
matrix equation by Gaussian elimination. The integration of
Eq. (32) is straightforward. The result of this procedure is
�(q0,q). It is convenient to represent it as the difference
�� = �(q0,q0 + δq) − �(q0,q0) with δq = q0 − q. Figure 2
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q q0

q 0

0.24

0. 0.1 0.2 0.3

0.44
0.46
0.48
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FIG. 3. (Color online) Logarithmic plot of the mass susceptibility
��(q0,q0 + δq) for β = 0.24 and δq > 0 (dotted line). The full lines
are linear fits with η = 0.45 for δq 
 qK and η0 = 0.69 for δq � qK .
Inset: The exponent η as a function of β.
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FIG. 4. (Color online) A1 phonon dispersion relation �ω(q)
measured from the K point for β = 0,0.1,0.2,0.3, with higher curves
corresponding to higher values of β. Note that ω(qK ), which depends
on β, has been substracted from each curve for an easier comparison.
Inset: the Kekulé phonon displacements.

displays the real and imaginary parts of �� for |δq| 
 q0.
We observe a cusp at δq = 0 in the real part, and a finite
imaginary part for δq < 0. Log plots of both sides of the
real and the imaginary parts reveal power laws as δq → 0.
A Kramers-Kronig analysis for |δq| 
 q0 shows that this is
only consistent if �� ∝ (δq)η, i.e., the exponents are all the
same. Figure 3 shows a log plot for δq > 0 where power-law
behavior is evident for δq 
 q0. We also observe that ��

crosses over to a different power law for δq � q0, which we
identify as the static result qη0 .9 The inset of Fig. 3 shows that
η is β dependent, and that it tends to the noninteracting result
in Eq. (10) as β → 0. The dependence of η0 on β can be found
in Ref. 9.

Finally, we plot the phonon dispersion relation, which is
the main result of this work. This is given in terms of the self-
energy evaluated at the phonon frequency ωK . To ease the
comparison at different values of β, we will also represent the
difference

�ω(q) = ω(q) − ω(qK ) = λK

2
[�(ωK,q) − �(ωK,qK )],

(33)

where we have recovered physical units with h̄vF = 6.5 eV Å.
The values of the parameters used are λK = 0.1 and � =
1.7 eV. The phonon dispersion is depicted in Fig. 4 for different
values of β. The dispersion follows the static power law qη0(β)

for q � qK , and the cusp turns into qη(β) as discussed.

IV. DISCUSSION

Our computation has shown that interactions turn the Kohn
anomaly at the K point into a power law, so it is natural
to ask whether the same effect happens for the anomaly
at �. This is not expected in general grounds because the
corresponding self-energy is built with vertices corresponding
to a conserved current, and these types of operators do not
have anomalous dimensions because of Ward identities.12 This
is also consistent with the fact that the Coulomb interaction

085441-4



POWER-LAW KOHN ANOMALY IN UNDOPED GRAPHENE . . . PHYSICAL REVIEW B 85, 085441 (2012)

renormalizes the A1 electron-phonon coupling strongly, but
not the E2 one.21,23 Power-law behavior is thus only expected
in the K-point anomaly.

From the experimental point of view, there are several
techniques available for the measurement of the A1 phonon
dispersion, and each one has its own potential difficulties.
In general, the power law at q > qK appears in a range
of momenta that has been already probed with different
techniques, while the cusp structure lies within the precision
limits of current experiments, and may require more effort.

Electron energy loss spectroscopy (EELS) is, for example,
a suitable technique that has already been used to map
the phonon dispersion at the K point in graphene. This
experiments have been performed on different substrates
for which graphene behaves as quasi-freestanding,16,30 such
as Pt (this is important as hybridization with the substrate
strongly changes the electron band structure and the Kohn
anomaly31). Metallic screening is, however, a disadvantage
as it spoils the critical behavior of the electrons, and an
insulating substrate would be more suited to observe the
effect.

A more indirect experiment (with insulating substrate) is to
track the dependence of the 2D Raman peak with incoming
laser energy. This method has been used14 to measure the
dispersion of the A1 phonon. While the amount of data it
yields and the range of momenta it covers is limited and
not very close to the K point, the observation of the q > qk

regime is certainly possible. Finally, x rays are a usual tool
to measure phonon dispersions in three-dimensional crystals,

and while it is probably challenging to obtain enough intensity
from a single sheet of graphene, experiments in graphite15,32

might be used to deduce the phonon dispersion. This approach
is not straightforward because the electronic structure of
graphite is different from graphene, and this must be taken
into account. Nevertheless, it is encouraging to observe that
precision measurements show an A1 phonon dispersion that is
not at all linear.15

A final comment concerns the robustness of our result
to more refined approximations schemes than the ladder
summation. While other sets of diagrams may modify our
quantitative predictions, it is very unlikely that the nonanalytic
behavior can be removed in this way. One may consider,
for example, the inclusion of self-energy terms for the
electron propagator,3 which may produce a slow logarithmic
dependence of the exponent. Finally, we also note that the 1/N
approximation does give power-law behavior for the Kekulé
mass correlator10,11 (and thus the self-energy) as well.

In summary, this work has shown that the elusive critical
behavior of interacting Dirac electrons in graphene manifests
itself through a power-law Kohn anomaly for the A1 phonon
at the K point.
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