134 research outputs found

    The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field

    Get PDF
    Several studies have aimed to address the natural inability of humankind to detect deception and accurately discriminate lying from truth in the legal context. To date, it has been well established that telling a lie is a complex mental activity. During deception, many functions of higher cognition are involved: the decision to lie, withholding the truth, fabricating the lie, monitoring whether the receiver believes the lie, and, if necessary, adjusting the fabricated story and maintaining a consistent lie. In the previous 15 years, increasing interest in the neuroscience of deception has resulted in new possibilities to investigate and interfere with the ability to lie directly from the brain. Cognitive psychology, as well as neuroimaging and neurostimulation studies, are increasing the possibility that neuroscience will be useful for lie detection. This paper discusses the scientific validity of the literature on neuroimaging and neurostimulation regarding lie detection to understand whether scientific findings in this field have a role in the forensic setting. We considered how lie detection technology may contribute to addressing the detection of deception in the courtroom and discussed the conditions and limits in which these techniques reliably distinguish whether an individual is lying

    Cerebellar Transcranial Direct Current Stimulation (ctDCS) Effect in Perception and Modulation of Pain

    Get PDF
    Transcranial direct stimulation (tDCS) in the treatment of intractable or marginally tractable pain is experiencing an increasing diffusion in many fields worldwide. Recently, new modality of tDCS application has been proposed and applied, as cerebellar transcranial direct current stimulation (ctDCS). Indeed, the cerebellum has been proved to play a role in pain processing and to be involved in a wide number of integrative functions. In this chapter, we encompass the history of the technique, analysis of principles, a general description, including the methodological procedures of ctDCS; then, main clinical applications and their main effects in perceptive threshold of pain and other sensation, pain intensity, and laser evoked potentials (LEPs) changes

    Cerebellar Transcranial Direct Current Stimulation (tDCS), Leaves Virtual Navigation Performance Unchanged

    Get PDF
    Spatial cognition is an umbrella term used to refer to the complex set of abilities necessary to encode, categorize, and use spatial information from the surrounding environment to move effectively and orient within it. Experimental studies indicate that the cerebellum belongs to the neural network involved in spatial cognition, although its exact role in this function remains unclear. Our aim was to investigate in a pilot study using a virtual reality navigation task in healthy subjects whether cerebellar transcranial direct current stimulation (tDCS), a non-invasive technique, influences spatial navigation. Forty healthy volunteers (24 women; age range = 20–42 years; years of education range 13–18) were recruited. The virtual reality spatial navigation task comprised two phases: encoding, in which participants actively navigated the environment and learned the spatial locations for one object, and retrieval, in which they retrieved the position of the object they had discovered and memorized in the previous encoding phase, starting from another starting point. Participants received tDCS stimulation (anodal or sham according to the experimental condition they were assigned to) for 20 min before beginning the retrieval phase. Our results showed that cerebellar tDCS left the accuracy of the three indexes used to measure effective navigational abilities unchanged. Hence, cerebellar tDCS had no influence on the retrieval phase for the spatial maps stored. Further studies, enrolling a larger sample and testing a different stimulation protocol, may give a greater insight into the role of the cerebellum in spatial navigation

    Cathodal transcranial direct current stimulation improves focal hand dystonia in musicians: A two-case study

    Get PDF
    Focal hand dystonia (FHD) in musicians is a movement disorder causing abnormal movements and irregularities in playing. Since weak electrical currents applied to the brain induce persistent excitability changes in humans, cathodal tDCS was proposed as a possible non-invasive approach for modulating cortical excitability in patients with FHD. However, the optimal targets and modalities have still to be determined. In this pilot study, we delivered cathodal (2 mA), anodal (2 mA) and sham tDCS over the motor areas bilaterally for 20 min daily for five consecutive days in two musicians with FHD. After cathodal tDCS, both patients reported a sensation of general wellness and improved symptoms of FHD. In conclusion, our pilot results suggest that cathodal tDCS delivered bilaterally over motor-premotor (M-PM) cortex for 5 consecutive days may be effective in improving symptoms in FHD

    EEG Evaluation of Stress Exposure on Healthcare Workers During COVID-19 Emergency: Not Just an Impression

    Get PDF
    Psychological distress among healthcare professionals, although already a common condition, was exacerbated by the COVID-19 pandemic. This effect has been generally self-reported or assessed through questionnaires. We aimed to identify potential abnormalities in the electrical activity of the brain of healthcare workers, operating in different roles during the pandemic. Cortical activity, cognitive performances, sleep, and burnout were evaluated two times in 20 COVID-19 frontline operators (FLCO, median age 29.5 years) and 20 operators who worked in COVID-19-free units (CFO, median 32 years): immediately after the outbreak of the pandemic (first session) and almost 6 months later (second session). FLCO showed higher theta relative power over the entire scalp (FLCO = 19.4%; CFO = 13.9%; p = 0.04) and lower peak alpha frequency of electrodes F7 (FLCO = 10.4 Hz; CFO = 10.87 Hz; p = 0.017) and F8 (FLCO = 10.47 Hz; CFO = 10.87 Hz; p = 0.017) in the first session. FLCO parietal interhemispheric coherence of theta (FLCO I = 0.607; FLCO II = 0.478; p = 0.025) and alpha (FLCO I = 0.578; FLCO II = 0.478; p = 0.007) rhythms decreased over time. FLCO also showed lower scores in the global cognitive assessment test (FLCO = 22.72 points; CFO = 25.56; p = 0.006) during the first session. The quantitative evaluation of the cortical activity might therefore reveal early signs of changes secondary to stress exposure in healthcare professionals, suggesting the implementation of measures to prevent serious social and professional consequences

    Cathodal Transcranial Direct Current Stimulation Improves Focal Hand Dystonia in Musicians: A Two-Case Study

    Get PDF
    Focal hand dystonia (FHD) in musicians is a movement disorder causing abnormal movements and irregularities in playing. Since weak electrical currents applied to the brain induce persistent excitability changes in humans, cathodal tDCS was proposed as a possible non-invasive approach for modulating cortical excitability in patients with FHD. However, the optimal targets and modalities have still to be determined. In this pilot study, we delivered cathodal (2 mA), anodal (2 mA) and sham tDCS over the motor areas bilaterally for 20 min daily for five consecutive days in two musicians with FHD. After cathodal tDCS, both patients reported a sensation of general wellness and improved symptoms of FHD. In conclusion, our pilot results suggest that cathodal tDCS delivered bilaterally over motor-premotor (M-PM) cortex for 5 consecutive days may be effective in improving symptoms in FHD

    Preliminary assessment of fentanyl and synthetic opioids prevalence among addiction patients by means of hair analysis

    Get PDF
    Background Although the diffusion of novel synthetic opioids has become a worldwide phenomenon, their prevalence of use in Italy seems to be limited. Existing national data is mainly derived by anamnestic surveyslacking of toxicological validation and not always disclosing the use of these compounds, which might remain under-diagnosed. Methods an assessment of the metabolites of the main synthetic opioids on hair samples was carried out among patients admitted at the Addiction Treatment Unit of Trento. The analytical approach included: (a) screening by means of immunoenzymatic method for fentanyl, fentanyl analogs and oxicodone; (b) confirmation of the samples resulted positive for fentanyl and oxicodone by means of HPLC-MS/; (c) search and dosage detection of Tramadol by means of HPLC-MS/MS. Results 3 out of 309 analysed samples were found positive: one was positive to Fentanyl and two to 4-ANPP. In the same cohort, 6 samples were also found positive for Oxycodone . Tramadol was searched in 189 samples and 12 of them resulted positive. Discussion and conclusion Those found positive were mainly young adults engaging in dangerous patterns of use and lacking awareness of risks. The phenomenon requires further consideration by health professionals. Training and more evidence-based information on synthetic opioids as well as other Novel Psychoactive Substances (NPS) are urgently needed.Peer reviewe

    Peri-lead edema and local field potential correlation in post-surgery subthalamic nucleus deep brain stimulation patients

    Get PDF
    Implanting deep brain stimulation (DBS) electrodes in patients with Parkinson's disease often results in the appearance of a non-infectious, delayed-onset edema that disappears over time. However, the time window between the DBS electrode and DBS stimulating device implant is often used to record local field potentials (LFPs) which are used both to better understand basal ganglia pathophysiology and to improve DBS therapy. In this work, we investigated whether the presence of post-surgery edema correlates with the quality of LFP recordings in eight patients with advanced Parkinson's disease implanted with subthalamic DBS electrodes. The magnetic resonance scans of the brain after 8.5 +/- 1.5 days from the implantation surgery were segmented and the peri-electrode edema volume was calculated for both brain hemispheres. We found a correlation (rho = -0.81, p < 0.0218, Spearman's correlation coefficient) between left side local field potentials of the low beta band (11-20 Hz) and the edema volume of the same side. No other significant differences between the hemispheres were found. Despite the limited sample size, our results suggest that the effect on LFPs may be related to the edema localization, thus indicating a mechanism involving brain networks instead of a simple change in the electrode-tissue interface
    • …
    corecore