1,125 research outputs found

    Elastic Light Scattering Measurements of Hemoglobin Oligomers

    Get PDF

    A unified Energy Footprint for Simulation Software

    Get PDF

    The Physical Foundation of Vasoocclusion in Sickle Cell Disease

    Get PDF
    AbstractThe pathology of sickle cell disease arises from the occlusion of small blood vessels because of polymerization of the sickle hemoglobin within the red cells. We present measurements using a microfluidic method we have developed to determine the pressure required to eject individual red cells from a capillary-sized channel after the cell has sickled. We find that the maximum pressure is only ∼100 Pa, much smaller than typically found in the microcirculation. This explains why experiments using animal models have not observed occlusion beginning in capillaries. The magnitude of the pressure and its dependence on intracellular concentration are both well described as consequences of sickle hemoglobin polymerization acting as a Brownian ratchet. Given the recently determined stiffness of sickle hemoglobin gels, the observed obstruction seen in sickle cell disease as mediated by adherent cells can now be rationalized, and surprisingly suggests a window of maximum vulnerability during circulation of sickle cells

    Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs), has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed.</p> <p>Methods</p> <p>To address questions related to the <it>in vivo </it>interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I <sup>+ </sup>lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8<sup>+ </sup>CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer.</p> <p>Results</p> <p>The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner <it>in vitro</it>. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors <it>in vivo</it>, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors <it>in vivo </it>without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface.</p> <p>Conclusion</p> <p>These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the <it>in vivo </it>model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular immunotherapy as effector cells seek and destroy areas of tumor growth and for testing strategies to improve clinical effectiveness.</p

    PDGFRα up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation

    Get PDF
    Control of BRAF(V600E) metastatic melanoma by BRAF inhibitor (BRAF-I) is limited by intrinsic and acquired resistance. Growth factor receptor up-regulation is among the mechanisms underlying BRAF-I resistance of melanoma cells. Here we demonstrate for the first time that PDGFRα up-regulation causes BRAF-I resistance. PDGFRα inhibition by PDGFRα-specific short hairpin (sh)RNA and by PDGFRα inhibitors restores and increases melanoma cells' sensitivity to BRAF-I in vitro and in vivo. This effect reflects the inhibition of ERK and AKT activation which is associated with BRAF-I resistance of melanoma cells. PDGFRα up-regulation is mediated by Sonic Hedgehog Homolog (Shh) pathway activation which is induced by BRAF-I treatment. Similarly to PDGFRα inhibition, Shh inhibition by LDE225 restores and increases melanoma cells' sensitivity to BRAF-I. These effects are mediated by PDGFRα down-regulation and by ERK and AKT inhibition. The clinical relevance of these data is indicated by the association of PDGFRα up-regulation in melanoma matched biopsies of BRAF-I +/- MEK inhibitor treated patients with shorter time to disease progression and less tumor regression. These findings suggest that monitoring patients for early PDGFRα up-regulation will facilitate the identification of those who may benefit from the treatment with BRAF-I in combination with clinically approved PDGFRα or Shh inhibitors
    corecore