86 research outputs found

    Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p

    Resistance to the cereal cyst nematode (Heterodera avenae) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a "stepping-stone" procedure

    Get PDF
    Transfer of resistance toHeterodera avenae, the cereal cyst nematode (CCN), by a stepping-stoneprocedure from the wild grassAegilops ventricosa to hexaploid wheat has been demonstrated. The number of nematodes per plant was lower, and reached a plateau much earlier, in the resistant introgression line H93-8 (1–2 nematodes per plant) than in the recipient H10-15 wheat (14–16 nematodes per plant). Necrosis (hypersensitive reaction) near the nematode, little cell fusion, and few, often degraded syncytia were observed in infested H93-8 roots, while abundant, well-formed syncytia were present in the susceptible H10-15 wheat. Line H93-8 was highly resistant to the two Spanish populations tested, as well as the four French races (Fr1-Fr4), and the British pathotype Hall, but was susceptible to the Swedish pathotypes HgI and HgIII. Resistance was inherited as though determined by a single quasi-dominant factor in the F2 generations resulting from crosses of H93-8 with H10-15 and with Loros, a resistant wheat carrying the geneCre1 (syn.Ccn1). The resistance gene in H93-8 (Cre2 orCcn2) is not allelic with respect to that in Loros. RFLPs and other markers, together with the cytogenetical evidence, indicate that theCre2 gene has been integrated into a wheat chromosome without affecting its meiotic pairing ability. Introduction ofCre2 by backcrossing into a commercial wheat backgroud increases grain yield when under challenge by the nematode and is not detrimental in the absence of infestation

    Management of toxic ingestions with the use of renal replacement therapy

    Get PDF
    Although rare, renal replacement therapy (RRT) for the treatment of the metabolic, respiratory and hemodynamic complications of intoxications may be required. Understanding the natural clearance of the medications along with their volume of distribution, protein binding and molecular weight will help in understanding the benefit of commencing RRT. This information will aid in choosing the optimal forms of RRT in an urgent setting. Overdose of common pediatric medications are discussed with suggestions on the type of RRT within this educational review

    Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus

    Get PDF
    Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host

    Determinants of director compensation in two-tier systems: evidence from German panel data

    Full text link
    corecore