117 research outputs found

    Incident cervical HPV infections in young women: Transition probabilities for CIN and infection clearance

    Get PDF
    Background: We describe transition probabilities for incident human papillomavirus (HPV) 16/18/31/33/35/45/52/58/59 infections and cervical intraepithelial neoplasia (CIN) 1 lesions. Methods: Women ages 16 to 23 years underwent cytology and cervical swab PCR testing for HPV at approximately 6-month intervals for up to 4 years in the placebo arm of an HPV vaccine trial. The cumulative proportion of incident HPV infections with diagnosed CIN, clearing (infection undetectable), or persisting without CIN, were estimated. Results: Most incident infections cleared, without detection of CIN, ranging at 36 months from 66.9% for HPV31 to 91.1% for HPV59. There was little variation in the 36-month proportion of incident HPV16, 18, and 31 infections followed by a CIN1 lesion positive for the relevant HPV type (range 16.7%-18.6%), with lower risks for HPV59 (6.4%) and HPV33 (2.9%). Thirty-six-month transition probabilities for CIN2 ranged across types from 2.2% to 9.1%; however, the number of events was generally too small for statistically significant differences to be seen across types for this endpoint, or CIN3. Conclusions: Some incident HPV types appear more likely to result in diagnosed CIN1 than others. The relative predominance of HPV16, vis-à-vis some other high-risk HPV types (e.g., HPV33) in prevalent CIN2/3, appears more directly associated with relatively greater frequency of incident HPV16 infections within the population, than a higher risk of infection progression to CIN2/3. Impact: Nearly all incident HPV infections either manifest as detectable CIN or become undetectable within 36 months. Some HPV types (e.g., 16 and 33) appear to have similar risk of CIN2/3 despite widely varied incidence. ©2011 AACR

    Genetic diversity between mouse strains allows identification of the CC027/GeniUnc strain as an orally reactive model of peanut allergy

    Get PDF
    Background: Improved animal models are needed to understand the genetic and environmental factors that contribute to food allergy. Objective: We sought to assess food allergy phenotypes in a genetically diverse collection of mice. Methods: We selected 16 Collaborative Cross (CC) mouse strains, as well as the classic inbred C57BL/6J, C3H/HeJ, and BALB/cJ strains, for screening. Female mice were sensitized to peanut intragastrically with or without cholera toxin and then challenged with peanut by means of oral gavage or intraperitoneal injection and assessed for anaphylaxis. Peanut-specific immunoglobulins, T-cell cytokines, regulatory T cells, mast cells, and basophils were quantified. Results: Eleven of the 16 CC strains had allergic reactions to intraperitoneal peanut challenge, whereas only CC027/GeniUnc mice reproducibly experienced severe symptoms after oral food challenge (OFC). CC027/GeniUnc, C3H/HeJ, and C57BL/6J mice all mounted a T H 2 response against peanut, leading to production of IL-4 and IgE, but only the CC027/GeniUnc mice reacted to OFC. Orally induced anaphylaxis in CC027/GeniUnc mice was correlated with serum levels of Ara h 2 in circulation but not with allergen-specific IgE or mucosal mast cell protease 1 levels, indicating systemic allergen absorption is important for anaphylaxis through the gastrointestinal tract. Furthermore, CC027/GeniUnc, but not C3H/HeJ or BALB/cJ, mice can be sensitized in the absence of cholera toxin and react on OFC to peanut. Conclusions: We have identified and characterized CC027/GeniUnc mice as a strain that is genetically susceptible to peanut allergy and prone to severe reactions after OFC. More broadly, these findings demonstrate the untapped potential of the CC population in developing novel models for allergy research

    Whole genome sequencing and progress toward full inbreeding of the mouse collaborative cross population

    Get PDF
    Two key features of recombinant inbred panels are well-characterized genomes and reproducibility. Here we report on the sequenced genomes of six additional Collaborative Cross (CC) strains and on inbreeding progress of 72 CC strains. We have previously reported on the sequences of 69 CC strains that were publicly available, bringing the total of CC strains with whole genome sequence up to 75. The sequencing of these six CC strains updates the efforts toward inbreeding undertaken by the UNC Systems Genetics Core. The timing reflects our competing mandates to release to the public as many CC strains as possible while achieving an acceptable level of inbreeding. The new six strains have a higher than average founder contribution from non-domesticus strains than the previously released CC strains. Five of the six strains also have high residual heterozygosity (.14%), which may be related to non-domesticus founder contributions. Finally, we report on updated estimates on residual heterozygosity across the entire CC population using a novel, simple and cost effective genotyping platform on three mice from each strain. We observe a reduction in residual heterozygosity across all previously released CC strains. We discuss the optimal use of different genetic resources available for the CC population

    Academic language socialisation in high school writing conferences

    Get PDF
    This study examines multilingual high school writers’ individual talk with their teachers in two advanced English language development classes to observe how such talk shapes linguistically diverse adolescents’ writing. Addressing adolescent writers’ language socialization through microethnographic discourse analysis, the author argues that teachers’ oral responses during writing conferences can either scaffold or deter students’ socialization into valued ways of using academic language for school writing. She suggests what forms of oral response provide scaffolding and what forms might limit multilingual adolescent learners’ academic literacy. Constructive interactions engaged students in dialogue about their writing, and students included content or phrasing from the interaction in their texts. Unhelpful interactions failed to foster students’ language development in observable ways. Although teachers attempted to scaffold ideas and language, they often did not guide students’ discovery of appropriate forms or points. These interactions represent restrictive academic language socialization: while some students did create academic texts, they learned little about academic language use

    A Multitrait Locus Regulates Sarbecovirus Pathogenesis

    Get PDF
    Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genomewide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans

    Genetic loci regulate Sarbecovirus pathogenesis: A comparison across mice and humans

    Get PDF
    Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations

    Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross

    Get PDF
    Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Content and performance of the MiniMUGA genotyping array: A new tool to improve rigor and reproducibility in mouse research

    Get PDF
    The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research
    • 

    corecore