3,145 research outputs found
Multi-frequency fine resolution imaging radar instrumentation and data acquisition
Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording
Thoracic Impedance as a Potential Indicator of Gz-induced Presyncope
We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 9 yr, 82.8 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control by: A: 5, B: 39, C: 11, D: 44 bpm; and the 4 who did not: A: 6, B: 35, C: 20, D: 50 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control: A: -394, B: -548, C: -537, D: -708 mL; and the 4: A: -516, B: -652, C: -583, D: -1263 mL. The 4 subjects lost more thoracic fluid volume than the 8, especially in protocol D. A slightly greater increase in HR for the 4 compared to the 8 was not adequate to maintain cardiac output during D. Our data support the concept that thoracic impedance can detect inability to return adequate fluid to the heart, thereby predicting presyncope
Hybrid Newton-type method for a class of semismooth equations
In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problem
Clinical characteristics of bacterial vaginosis among women testing positive for fastidious bacteria
Finite Temperature Models of Bose-Einstein Condensation
The theoretical description of trapped weakly-interacting Bose-Einstein
condensates is characterized by a large number of seemingly very different
approaches which have been developed over the course of time by researchers
with very distinct backgrounds. Newcomers to this field, experimentalists and
young researchers all face a considerable challenge in navigating through the
`maze' of abundant theoretical models, and simple correspondences between
existing approaches are not always very transparent. This Tutorial provides a
generic introduction to such theories, in an attempt to single out common
features and deficiencies of certain `classes of approaches' identified by
their physical content, rather than their particular mathematical
implementation.
This Tutorial is structured in a manner accessible to a non-specialist with a
good working knowledge of quantum mechanics. Although some familiarity with
concepts of quantum field theory would be an advantage, key notions such as the
occupation number representation of second quantization are nonetheless briefly
reviewed. Following a general introduction, the complexity of models is
gradually built up, starting from the basic zero-temperature formalism of the
Gross-Pitaevskii equation. This structure enables readers to probe different
levels of theoretical developments (mean-field, number-conserving and
stochastic) according to their particular needs. In addition to its `training
element', we hope that this Tutorial will prove useful to active researchers in
this field, both in terms of the correspondences made between different
theoretical models, and as a source of reference for existing and developing
finite-temperature theoretical models.Comment: Detailed Review Article on finite temperature theoretical techniques
for studying weakly-interacting atomic Bose-Einstein condensates written at
an elementary level suitable for non-experts in this area (e.g. starting PhD
students). Now includes table of content
Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole
In recent years, searches of archival X-ray data have revealed galaxies
exhibiting nuclear quasi-periodic eruptions with periods of several hours.
These are reminiscent of the tidal disruption of a star by a supermassive black
hole, and the repeated, partial stripping of a white dwarf in an eccentric
orbit around a ~10^5 solar mass black hole provides an attractive model. A
separate class of periodic nuclear transients, with significantly longer
timescales, have recently been discovered optically, and may arise from the
partial stripping of a main-sequence star by a ~10^7 solar mass black hole. No
clear connection between these classes has been made. We present the discovery
of an X-ray nuclear transient which shows quasi-periodic outbursts with a
period of weeks. We discuss possible origins for the emission, and propose that
this system bridges the two existing classes outlined above. This discovery was
made possible by the rapid identification, dissemination and follow up of an
X-ray transient found by the new live \swift-XRT transient detector,
demonstrating the importance of low-latency, sensitive searches for X-ray
transients.Comment: To be published in Nature Astronomy at 1600 BST on September 7th.
This version for arXiv includes the main article, Methods and Supplementary
Information combined into a single fil
Synthesis and structural characterization of a mimetic membrane-anchored prion protein
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
- …