2,228 research outputs found
Effect of phase noise on useful quantum correlations in Bose Josephson junctions
In a two-mode Bose Josephson junction the dynamics induced by a sudden quench
of the tunnel amplitude leads to the periodic formation of entangled states.
For instance, squeezed states are formed at short times and macroscopic
superpositions of phase states at later times. The two modes of the junction
can be viewed as the two arms of an interferometer; use of entangled states
allows to perform atom interferometry beyond the classical limit. Decoherence
due to the presence of noise degrades the quantum correlations between the
atoms, thus reducing phase sensitivity of the interferometer. We consider the
noise induced by stochastic fluctuations of the energies of the two modes of
the junction. We analyze its effect on squeezed states and macroscopic
superpositions and study quantitatively the amount of quantum correlations
which can be used to enhance the phase sensitivity with respect to the
classical limit. To this aim we compute the squeezing parameter and the quantum
Fisher information during the quenched dynamics. For moderate noise intensities
we show that these useful quantum correlations increase on time scales beyond
the squeezing regime. This suggests multicomponent superpositions as
interesting candidates for high-precision atom interferometry
Noise in Bose Josephson junctions: Decoherence and phase relaxation
Squeezed states and macroscopic superpositions of coherent states have been
predicted to be generated dynamically in Bose Josephson junctions. We solve
exactly the quantum dynamics of such a junction in the presence of a classical
noise coupled to the population-imbalance number operator (phase noise),
accounting for, for example, the experimentally relevant fluctuations of the
magnetic field. We calculate the correction to the decay of the visibility
induced by the noise in the non-Markovian regime. Furthermore, we predict that
such a noise induces an anomalous rate of decoherence among the components of
the macroscopic superpositions, which is independent of the total number of
atoms, leading to potential interferometric applications.Comment: Fig 2 added; version accepted for publicatio
Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium
Due to the recent restrictions deriving from the application of the Kyoto
protocol, the main components of the gas mixtures presently used in the
Resistive Plate Chambers systems of the LHC experiments will be most probably
phased out of production in the coming years. Identifying possible replacements
with the adequate characteristics requires an intense R&D, which was recently
started, also in collaborations across the various experiments. Possible
candidates have been proposed and are thoroughly investigated. Some tests on
one of the most promising candidate - HFO-1234ze, an allotropic form of
tetrafluoropropane- have already been reported. Here an innovative approach,
based on the use of Helium, to solve the problems related to the too elevate
operating voltage of HFO-1234ze based gas mixtures, is discussed and the
relative first results are shown.Comment: 9 pages, 6 figures, 1 tabl
Ab-initio calculation of all-optical time-resolved calorimetry of nanosized systems: Evidence of nanosecond-decoupling of electron and phonon temperatures
The thermal dynamics induced by ultrashort laser pulses in nanoscale systems,
i.e. all-optical time-resolved nanocalorimetry is theoretically investigated
from 300 to 1.5 K. We report ab-initio calculations describing the temperature
dependence of the electron-phonon interactions for Cu nanodisks supported on
Si. The electrons and phonons temperatures are found to decouple on the ns time
scale at 10 K, which is two orders of magnitude in excess with respect to that
found for standard low-temperature transport experiments. By accounting for the
physics behind our results we suggest an alternative route for overhauling the
present knowledge of the electron-phonon decoupling mechanism in nanoscale
systems by replacing the mK temperature requirements of conventional
experiments with experiments in the time-domain.Comment: 5 pages, 3 figures. Accepted on Physical Review B
Galactic chemical evolution of heavy elements: from Barium to Europium
We follow the chemical evolution of the Galaxy for elements from Ba to Eu,
using an evolutionary model suitable to reproduce a large set of Galactic
(local and non local) and extragalactic constraints. Input stellar yields for
neutron-rich nuclei have been separated into their s-process and r-process
components. The production of s-process elements in thermally pulsing
asymptotic giant branch stars of low mass proceeds from the combined operation
of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases
neutrons in radiative conditions during the interpulse phase, and the reaction
22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The
resulting s-process distribution is strongly dependent on the stellar
metallicity. For the standard model discussed in this paper, it shows a sharp
production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process
yields, we assume that the production of r-nuclei is a primary process
occurring in stars near the lowest mass limit for Type II supernova
progenitors. The r-contribution to each nucleus is computed as the difference
between its solar abundance and its s-contribution given by the Galactic
chemical evolution model at the epoch of the solar system formation. We compare
our results with spectroscopic abundances of elements from Ba to Eu at various
metallicities (mainly from F and G stars) showing that the observed trends can
be understood in the light of the present knowledge of neutron capture
nucleosynthesis. Finally, we discuss a number of emerging features that deserve
further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap
Candidate eco-friendly gas mixtures for MPGDs
Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements
- …
