45 research outputs found

    Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks

    Get PDF
    Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species’ geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered

    A research agenda for improving national Ecological Footprint accounts

    Full text link

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Inventory of county records, Parker County courthouse, Weatherford, Texas

    No full text
    Inventory of records of Parker County housed in the Parker County courthouse in Weatherford. Begins with an introduction and explanation of the roles of various county government offices. Describes the records of the Commissioners Court, County Clerk, County Court, County Attorney, District Clerk, District Attorney, Justice of the Peace, Sheriff, Tax Assessor-Collector, Treasurer, Auditor, and School Superintendent. Also provides a list of Parker County Records and an index

    U.S. Organic Production, Markets, Consumers, and Policy, 2000-21

    No full text
    Organic agriculture can support global and domestic food needs, expand consumer food choices, enhance farm profitability, and increase agricultural sustainability. Public policy has played a key role in the development of the organic industry in the United States, beginning with the passage of the Organic Foods Production Act of 1990 and the U.S. Department of Agriculture’s (USDA) subsequent publication of national organic rules in 2000. While U.S. organic acreage was still only 1 percent of U.S. farmland in 2019, organic farm sales accounted for about 3 percent of U.S. farm receipts. Consumer demand for organically produced products has driven an expansion in U.S. organic production since 2000. The premiums paid by consumers give farmers the opportunity to recover the cost of production and improve their financial well-being. This report describes U.S. organic policy initiatives since 2000 and examines the importance of investment in research on organic practices. The report also investigates key components of organic supply chains—including production, certification, farm-level costs and returns, wholesale markets, and industry structure—along with the evolving characteristics of organic food consumers and retail markets

    Unique arthropod communities on different host-plant genotypes results in greater arthropod diversity

    No full text
    Studies on the effect of plant-species diversity on various ecological processes has led to the study of the effects of plant-genetic diversity in the context of community genetics. Arthropod diversity can increase with plant-species or plant-genetic diversity (Wimp et al. in Ecol Lett 7:776-780, 2004). Plant diversity effects can be difficult to separate from other ecological processes, for example, complementarity. We asked three basic questions: (1) Are arthropod communities unique on different host-plant genotypes? (2) Is arthropod diversity greater when associated with greater plant-genetic diversity? (3) Are arthropod communities more closely associated with host-plant genetics than the plant neighborhood? We studied canopy arthropods on Populus fremontii trees randomly planted in a common garden. All trees were planted in a homogeneous matrix, which helped to reduce P. fremontii neighborhood effects. One sample was comprised of few P. fremontii genotypes with many clones. A second sample was comprised of many P. fremontii genotypes with few clones. A second data set was used to examine the relationships between the arthropod community with P. fremontii genetic composition and the neighborhood composition of the focal host plant. Unique arthropod communities were associated with different P. fremontii genotypes, and arthropod community diversity was greater in the sample with greater P. fremontii genotypic diversity. Arthropod community similarity was negatively correlated with P. fremontii genetic distance, but arthropod community similarity was not related to the neighborhood of the P. fremontii host plant. © 2012 Springer Science+Business Media B.V

    Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range

    No full text
    Plant functional traits involved in carbon and water acquisition are likely to be adaptive across the range of a species if the availability of these resources varies across this range and are limiting to growth or fitness. At the interspecific level, leaf economic traits associated with rapid resource capture are correlated with fast growth rates. However, relationships between leaf traits and growth are poorly understood at the intraspecific level. We examined two hypotheses: (i) leaf traits vary genotypically among Populus fremontii populations from different thermal environments; and (ii) leaf traits are related to growth rate of these P. fremontii populations. We used a common garden at the warm edge of P. fremontii distribution that included individuals transplanted from 11 provenances. Provenances varied in mean annual maximum temperature by 5·9 °C, reflecting a range of expected increases in temperature over the next 80 years. Conservative leaf traits (e.g. low specific leaf area, N content, stomatal conductance, net photosynthetic rate and high leaf water-use efficiency) were positively related to growth rates of genotypes and populations, a pattern opposite of that widely reported among species in other studies. Provenance temperature explained 75% of the variation in multivariate leaf traits with the warmest provenances having the most conservative traits and highest growth rates. Clinal genetic variation suggests that P. fremontii may be adapted to thermal environments. Leaf area-to-sapwood area ratio was positively associated with growth rate, while leaf area-based net photosynthetic rate was negatively associated with growth rate; these results suggest that hydraulic architecture was more important than leaf-level photosynthetic rate in determining growth rate. Synthesis. Our results suggest that conservative leaf traits promote rapid growth of P. fremontii genotypes in extremely hot environments. Thus, relationships between leaf economic traits among species do not necessarily apply to the range of variation among genotypes within species. The generality of this pattern should be examined for other species that will be exposed to climate warming. Moreover, our research shows that common garden provenance trials are useful for identifying genotypes best suited to a predicted warmer climate and for improving understanding of the physiological basis for adaptation to warm environments
    corecore