10,368 research outputs found
A first order Tsallis theory
We investigate first-order approximations to both i) Tsallis' entropy
and ii) the -MaxEnt solution (called q-exponential functions ). It is
shown that the functions arising from the procedure ii) are the MaxEnt
solutions to the entropy emerging from i). The present treatment is free of the
poles that, for classic quadratic Hamiltonians, appear in Tsallis' approach, as
demonstrated in [Europhysics Letters {\bf 104}, (2013), 60003]. Additionally,
we show that our treatment is compatible with extant date on the ozone layer.Comment: 4 figures adde
A modern Fizeau experiment for education and outreach purposes
On the occasion of the laser's 50th anniversary, we performed a modern Fizeau
experiment, measuring the speed of light with a laser beam passing over the
city centre of Marseille. For a round trip distance of almost five kilometers,
the measurement has reached an uncertainty of about 10, mainly due to
atmospheric fluctuations. We present the experimental and pedagogical
challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201
Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3
Recent works have shown that the domain walls of room-temperature
multiferroic BiFeO3 (BFO) thin films can display distinct and promising
functionalities. It is thus important to understand the mechanisms underlying
domain formation in these films. High-resolution x-ray diffraction and
piezo-force microscopy, combined with first-principles simulations, have
allowed us to characterize both the atomic and domain structure of BFO films
grown under compressive strain on (001)-SrTiO3, as a function of thickness. We
derive a twining model that describes the experimental observations and
explains why the 71o domain walls are the ones commonly observed in these
films. This understanding provides us with a new degree of freedom to control
the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem
to display well. A proper version can be found in the source fil
Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light
High-resolution ghost image and ghost diffraction experiments are performed
by using a single source of thermal-like speckle light divided by a beam
splitter. Passing from the image to the diffraction result solely relies on
changing the optical setup in the reference arm, while leaving untouched the
object arm. The product of spatial resolutions of the ghost image and ghost
diffraction experiments is shown to overcome a limit which was formerly thought
to be achievable only with entangled photons.Comment: 5 pages, 4 figure
Recommended from our members
Exomars entry and descent science
The entry, descent and landing of ExoMars offer a rare (once-per-mission) opportunity to perform in situ investigation of the martian environment over a wide altitude range. We present an initial assessment of the atmospheric science that can be performed using sensors of the Entry, Descent and Landing System (EDLS), over and above the expected engineering information. This is intended to help fulfill the concept of an Atmospheric Parameters Package (APP), as mentioned in the ExoMars draft Science Management Plan [ESA, 2005].
Mars' atmosphere is highly variable in time and space, due to phenomena including inertio-gravity waves, thermal tide effects, dust, solar wind conditions, and diurnal, seasonal and topographic effects. Atmospheric profile measurements, drawing on heritage from the Huygens Atmospheric Structure Instrument (HASI), which encountered Titan's atmosphere
in 2005 [1], should allow us to address questions of the martian atmosphere's structure, dynamics and variability
Slow and fast micro-field components in warm and dense hydrogen plasmas
The aim of this work is the investigation of the statistical properties of
local electric fields in an ion-electron two component plasmas for coupled
conditions. The stochastic fields at a charged or at a neutral point in plasmas
involve both slow and fast fluctuation characteristics. The statistical study
of these local fields based on a direct time average is done for the first
time. For warm and dense plasma conditions, typically , , well controlled molecular dynamics (MD)
simulations of neutral hydrogen, protons and electrons have been carried out.
Relying on these \textit{ab initio} MD calculations this work focuses on an
analysis of the concepts of statistically independent slow and fast local field
components, based on the consideration of a time averaged electric field. Large
differences are found between the results of these MD simulations and
corresponding standard results based on static screened fields. The effects
discussed are of importance for physical phenomena connected with stochastic
electric field fluctuations, e.g., for spectral line broadening in dense
plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
- …