7,650 research outputs found

    On methods to determine bounds on the Q-factor for a given directivity

    Full text link
    This paper revisit and extend the interesting case of bounds on the Q-factor for a given directivity for a small antenna of arbitrary shape. A higher directivity in a small antenna is closely connected with a narrow impedance bandwidth. The relation between bandwidth and a desired directivity is still not fully understood, not even for small antennas. Initial investigations in this direction has related the radius of a circumscribing sphere to the directivity, and bounds on the Q-factor has also been derived for a partial directivity in a given direction. In this paper we derive lower bounds on the Q-factor for a total desired directivity for an arbitrarily shaped antenna in a given direction as a convex problem using semi-definite relaxation techniques (SDR). We also show that the relaxed solution is also a solution of the original problem of determining the lower Q-factor bound for a total desired directivity. SDR can also be used to relax a class of other interesting non-convex constraints in antenna optimization such as tuning, losses, front-to-back ratio. We compare two different new methods to determine the lowest Q-factor for arbitrary shaped antennas for a given total directivity. We also compare our results with full EM-simulations of a parasitic element antenna with high directivity.Comment: Correct some minor typos in the previous versio

    Optimal Planar Electric Dipole Antenna

    Full text link
    Considerable time is often spent optimizing antennas to meet specific design metrics. Rarely, however, are the resulting antenna designs compared to rigorous physical bounds on those metrics. Here we study the performance of optimized planar meander line antennas with respect to such bounds. Results show that these simple structures meet the lower bound on radiation Q-factor (maximizing single resonance fractional bandwidth), but are far from reaching the associated physical bounds on efficiency. The relative performance of other canonical antenna designs is compared in similar ways, and the quantitative results are connected to intuitions from small antenna design, physical bounds, and matching network design.Comment: 10 pages, 15 figures, 2 tables, 4 boxe

    Two-dimensional two-component plasma with adsorbing impurities

    Full text link
    We study the behavior of the two-dimensional two-component plasma in the presence of some adsorbing impurities. Using a solvable model, we find analytic expressions for the thermodynamic properties of the plasma such as the nn-body densities, the grand potential, and the pressure. We specialize in the case where there are one or two adsorbing point impurities in the plasma, and in the case where there are one or two parallel adsorbing lines. In the former case we study the effective interaction between the impurities, due to the charge redistribution around them. The latter case is a model for electrodes with adsorbing sticky sites on their surface

    Architecture of collaborating frameworks: simulation, visualisation, user interface and analysis

    Get PDF
    The Anaphe project is an ongoing effort to provide an Object Oriented software environment for data analysis in HENP experiments. A range of commercial and public domain libraries is used to cover basic functionalities; on top of these libraries a set of HENP-specific C++ class libraries for histogram management, fitting, plotting and ntuple-like data analysis has been developed. In order to comply with the user requirements for a command-line driven tool, we have chosen to use a scripting language (Python) as the front-end for a data analysis tool. The loose coupling provided by the consequent use of (AIDA compliant) Abstract Interfaces for each component in combination with the use of shared libraries for their implementation provides an easy integration of existing libraries into modern scripting languages thus allowing for rapid application development. This integration is simplified even further using a specialised toolkit (SWIG) to create "shadow classes" for the Python language, which map the definitions of the Abstract Interfaces almost at a one-to-one level. This paper will give an overview of the architecture and design choices and will present the current status and future developments of the project

    H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks

    Get PDF
    The use of NanoSIMS on primary melt inclusions in partially melted rocks is a powerful approach to clarify the budget of volatiles at depth during crust formation and its reworking. Anatectic melt inclusions are indeed gateways to quantify H2O, halogens and other species (e.g. CO2, N) partitioned into the deep partial melts generated during metamorphism of the continental crust. Here we present new datasets of NanoSIMS measurements of H2O and Cl in preserved melt inclusions from metamorphic rocks with different protoliths – magmatic or sedimentary – which underwent partial melting at different pressure–temperature–fluid conditions. These new datasets are then compared with similar data on natural anatectic melts available in the literature to date. Our study provides novel, precise constraints for the H2O content in natural melts formed at high pressure, a field previously investigated mostly via experiments. We also show that H2O heterogeneities in partial melts at the microscale are common, regardless of the rock protolith. Correlations between H2O contents and P–T values can be identified merging new and old data on anatectic inclusions via NanoSIMS. Overall, the data acquired so far indicate that silicate melt generation in nature always requires H2O, even for the hottest melts found so far (&gt;1000 ∘C). Moreover, in agreement with previous work, preserved glassy inclusions always appear to be poorer in H2O than crystallized ones, regardless of their chemical system and/or P–T conditions of formation. Finally, this study reports the very first NanoSIMS data on Cl (often in amounts &gt;1000 ppm) acquired in situ on natural anatectic melts, showing how anatectic melt inclusions – additionally to magmatic ones – may become a powerful tool to clarify the role of halogens in many geological processes, not only in crustal evolution but also in ore deposit formation.</p
    • …
    corecore