182 research outputs found

    ReAFFIRM: Real-time Assessment of Flash Flood Impacts: a Regional high-resolution Method

    Get PDF
    Flash floods evolve rapidly in time, which poses particular challenges to emergency managers. One way to support decision-making is to complement models that estimate the flash flood hazard (e.g. discharge or return period) with tools that directly translate the hazard into the expected socio-economic impacts. This paper presents a method named ReAFFIRM that uses gridded rainfall estimates to assess in real time the flash flood hazard and translate it into the corresponding impacts. In contrast to other studies that mainly focus on in- dividual river catchments, the approach allows for monitoring entire regions at high resolution. The method consists of the following three components: (i) an already existing hazard module that processes the rainfall into values of exceeded return period in the drainage network, (ii) a flood map module that employs the flood maps created within the EU Floods Directive to convert the return periods into the expected flooded areas and flood depths, and (iii) an impact assessment module that combines the flood depths with several layers of socio- economic exposure and vulnerability. Impacts are estimated in three quantitative categories: population in the flooded area, economic losses, and affected critical infrastructures. The performance of ReAFFIRM is shown by applying it in the region of Catalonia (NE Spain) for three significant flash flood events. The results show that the method is capable of identifying areas where the flash floods caused the highest impacts, while some locations affected by less significant impacts were missed. In the locations where the flood extent corresponded to flood observations, the assessments of the population in the flooded area and affected critical infrastructures seemed to perform reasonably well, whereas the economic losses were systematically overestimated. The effects of different sources of uncertainty have been discussed: from the estimation of the hazard to its translation into impacts, which highly depends on the quality of the employed datasets, and in particular on the quality of the rainfall inputs and the comprehensiveness of the flood maps.Peer ReviewedPostprint (published version

    IMPLEMENTATION OF A PHOTOVOLTAIC FLOATING COVER FOR IRRIGATION RESERVOIRS

    Full text link
    [EN] The article presents the main features of a floating photovoltaic cover system (FPCS) for water irrigation reservoirs whose purpose is to reduce the evaporation of water while generating electrical power. The system consists of polyethylene floating modules which are able to adapt to varying reservoir water levels by means of tension bars and elastic fasteners. (C) 2013 Elsevier Ltd. All rights reserved.Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.; Torregrosa Soler, JB.; Ferran Gozalvez, JJ.; Ferrer Gisbert, CM. (2014). IMPLEMENTATION OF A PHOTOVOLTAIC FLOATING COVER FOR IRRIGATION RESERVOIRS. Journal of Cleaner Production. 66:568-570. doi:10.1016/j.jclepro.2013.11.006S5685706

    A new photovoltaic floating cover system for water reservoirs

    Full text link
    This paper describes a new photovoltaic floating cover system for water reservoirs developed jointly by the company CELEMIN ENERGY and the Universidad Politecnica de Valencia. The system consists of polyethylene floating modules which, with the use of tension producing elements and elastic fasteners, are able to adapt to varying reservoir water levels. A full-scale plant located near Alicante (Spain) was built in an agriculture reservoir to study the behaviour of the system. The top of the reservoir has a surface area of 4700 m(2) but only 7% of such area has been covered with the fixed solar system. The system also minimizes evaporation losses from water reservoirs. (C) 2013 Elsevier Ltd. All rights reserved.The English revision of this paper was funded by the Universidad Politecnica de Valencia, Spain.Ferrer Gisbert, CM.; Ferran Gozalvez, JJ.; Redón Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.; Torregrosa Soler, JB. (2013). A new photovoltaic floating cover system for water reservoirs. Renewable Energy. (60):63-70. doi:10.1016/j.renene.2013.04.007S63706

    Project and Design of a Special Agricultural Warehouse Developed in Phases in Valencia (Spain)

    Full text link
    [EN] This article describes the developing phases to build warehouses for a Pomelo Company at Valencian County (East of Spain). The warehouses are remarkable because they did not have many intermediate columns. Spatial and lightweight solutions are adopted and described. In the Projects also natural ventilation and lighting have been considered with a successfully result. Erection conditions and Regulations have been taken also account. It has been an inspiration motive for other consultants.Ferrer Gisbert, CM.; Ferrer-Gisbert, P.; Ferran Gozalvez, JJ.; Redón-Santafé, M.; Torregrosa Soler, JB.; Sánchez-Romero, F. (2020). Project and Design of a Special Agricultural Warehouse Developed in Phases in Valencia (Spain). Current Trends in Civil & Structural Engineering. 5(5):1-8. https://doi.org/10.33552/CTCSE.2020.05.000623S185

    Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique

    Full text link
    [EN] The main objective of this research is to separate virgin polymers (PA, PC, PP, HDPE; PS, and ABS) and post-consumer plastic waste from municipal solid waste (MSW) using the sinking-flotation technique. Separation was carried out on a pilot scale in an 800-l useful volume container with 160 rpm agitation for one hour. Tap water, ethanol solutions, and sodium chloride at different concentrations were used as densification medium. Virgin polymers were separated into two groups: low-density (HDPE and PP) and high-density polymers groups (PS, ABS, PA, and PC). Polymers whose density was less than that of the medium solution floated to the surface, while those whose density was greater than those of the medium solution sank to the bottom. The experimental results showed that complete separation of HDPE from PP achieved 23% ethanol v/v, whereas high-density polymers separated up to 40% w/v sodium chloride. Polymer recovery ranged from 70 to 99.70%. In post-consumer recycled plastic waste, fractions of 29.6% polyolefins, 37.54% PS, 11% ABS, 8% PA, 12% PC PET, and PVC were obtained. Finally, cast plates were made of the post-consumer waste to properly identify the polymer type present in the separated fractions.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer NatureMeneses Quelal, WO.; Velázquez Martí, B.; Ferrer Gisbert, A. (2022). Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environmental Science and Pollution Research. 29(1):1364-1374. https://doi.org/10.1007/s11356-021-15611-w13641374291Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542. https://doi.org/10.1016/j.jhazmat.2007.06.076Aljerf L (2016) Green technique development for promoting the efficiency of pulp slurry reprocess. Sci J King Faisal Univ 17:1–10. https://doi.org/10.1007/978-3-319-18744-0Al-Salem SM (2019) Influential parameters on natural weathering under harsh climatic conditions of mechanically recycled plastic film specimens. J Environ Manag 230:355–365. https://doi.org/10.1016/j.jenvman.2018.09.044Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conserv Recycl 43:119–132. https://doi.org/10.1016/j.resconrec.2004.05.003Ayeleru OO, Dlova S, Akinribide OJ, Ntuli F, Kupolati WK, Marina PF, Blencowe A, Olubambi PA (2020) Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Manag 110:24–42. https://doi.org/10.1016/j.wasman.2020.04.017Bauer M, Lehner M, Schwabl D, Flachberger H, Kranzinger L, Pomberger R, Hofer W (2018) Sink–float density separation of post-consumer plastics for feedstock recycling. J Mater Cycles Waste Manag 20:1781–1791. https://doi.org/10.1007/s10163-018-0748-zBing X, Bloemhof JM, Ramos TRP, Barbosa-Povoa AP, Wong CY, van der Vorst JGAJ (2016) Research challenges in municipal solid waste logistics management. Waste Manag 48:584–592. https://doi.org/10.1016/j.wasman.2015.11.025Bonifazi G, D’Agostini M, Dall’Ava A, Serranti S, Turioni F (2013) A new hyperspectral imaging based device for quality control in plastic recycling. In: Proc.SPIE. https://doi.org/10.1117/12.2014909Bucknall DG (2020) Plastics as a materials system in a circular economy. Philos Trans R Soc A Math Phys Eng Sci 378:20190268. https://doi.org/10.1098/rsta.2019.0268Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434. https://doi.org/10.1007/s10163-014-0241-2Burange AS, Gawande MB, Lam FLY, Jayaram RV, Luque R (2015) Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chem 17:146–156. https://doi.org/10.1039/C4GC01760ABurat F, Güney A, Olgaç Kangal M (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813. https://doi.org/10.1016/j.wasman.2008.12.018Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S, Bhattacharyya S, Yadav VK, Bach QV (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J Clean Prod 277:123227. https://doi.org/10.1016/j.jclepro.2020.123227Chen X, Xi F, Geng Y, Fujita T (2011) The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China. Waste Manag 31:168–179. https://doi.org/10.1016/j.wasman.2010.08.010Dahlbo H, Poliakova V, Mylläri V, Sahimaa O, Anderson R (2018) Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag 71:52–61. https://doi.org/10.1016/j.wasman.2017.10.033Dodbiba G, Haruki N, Shibayama A, Miyazaki T, Fujita T (2002) Combination of sink–float separation and flotation technique for purification of shredded PET-bottle from PE or PP flakes. Int J Miner Process 65:11–29. https://doi.org/10.1016/S0301-7516(01)00056-4Du Y, Zhang Y, Jiang H, Li T, Luo M, Wang L, Wang C, Wang H (2020) Hydrophilic modification of polycarbonate surface with surface alkoxylation pretreatment for efficient separation of polycarbonate and polystyrene by froth flotation. Waste Manag 118:471–480. https://doi.org/10.1016/j.wasman.2020.09.006Ferrara G, Meloy TP (1999) Low dense media process: a new process for low-density solid separation. Powder Technol 103:151–155. https://doi.org/10.1016/S0032-5910(98)00216-2Ferronato N, Torretta V (2019) Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health 16:1060. https://doi.org/10.3390/ijerph16061060Fraunholcz N (2004) Separation of waste plastics by froth flotation––a review, part I. Miner Eng 17:261–268. https://doi.org/10.1016/j.mineng.2003.10.028Fu S, Fang Y, Yuan H, Tan W, Dong Y (2017) Effect of the medium’s density on the hydrocyclonic separation of waste plastics with different densities. Waste Manag 67:27–31. https://doi.org/10.1016/j.wasman.2017.05.019Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782Gu L, Ozbakkaloglu T (2016) Use of recycled plastics in concrete: A critical review. Waste Manag 51:19–42. https://doi.org/10.1016/j.wasman.2016.03.005Gundupalli SP, Hait S, Thakur A (2017) A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag 60:56–74. https://doi.org/10.1016/j.wasman.2016.09.015Guney A, Poyraz MI, Kangal O, Burat F (2013) Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation. Waste Manag 33:1795–1799. https://doi.org/10.1016/j.wasman.2013.05.006Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217. https://doi.org/10.1016/j.jes.2015.01.034Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311Hu B, Serranti S, Fraunholcz N, Di Maio F, Bonifazi G (2013) Recycling-oriented characterization of polyolefin packaging waste. Waste Manag 33:574–584. https://doi.org/10.1016/j.wasman.2012.11.018Huang D-Y, Zhou S-G, Hong W, Feng W-F, Tao L (2013) Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China. Atmos Environ 71:327–334. https://doi.org/10.1016/j.atmosenv.2013.02.011Huysman S, De Schaepmeester J, Ragaert K, Dewulf J, De Meester S (2017) Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resour Conserv Recycl 120:46–54. https://doi.org/10.1016/j.resconrec.2017.01.013Ito M, Tsunekawa M, Ishida E, Kawai K, Takahashi T, Abe N, Hiroyoshi N (2010) Reverse jig separation of shredded floating plastics — separation of polypropylene and high density polyethylene. Int J Miner Process 97:96–99. https://doi.org/10.1016/j.minpro.2010.08.007Jin F-L, Zhao M, Park M, Park S-J (2019) Recent Trends of Foaming in Polymer Processing: A Review. Polymers (Basel) 11:953. https://doi.org/10.3390/polym11060953Kangal MO (2010) Selective Flotation Technique for Separation of PET and HDPE Used in Drinking Water Bottles. Miner Process Extr Metall Rev 31:214–223. https://doi.org/10.1080/08827508.2010.483362Kangal MO, Üçerler Z (2018) Recycling of Virgin and Post-Consumer Polypropylene and High Density Polyethylene. Int Polym Process 33:268–275. https://doi.org/10.3139/217.3506Karmakar GP (2020) Regeneration and Recovery of Plastics. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-820352-1.00045-6Lackner M (2015) Bioplastics-Biobased plastics as renewable and/or biodegradable alternatives to petroplastics. Kirk-Othmer Encycl Chem Technol:1–41. https://doi.org/10.1002/0471238961.koe00006Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH (2020) The United States’ contribution of plastic waste to land and ocean. Sci Adv 6:288. https://doi.org/10.1126/sciadv.abd0288Li M, Qiu J, Xing H, Fan D, Wang S, Li S, Jiang Z, Tang T (2018a) In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process. Polymer (Guildf) 155:116–128. https://doi.org/10.1016/j.polymer.2018.09.034Li R, Lin H, Lan P, Gao J, Huang Y, Wen Y, Yang W (2018b) Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers (Basel) 10:1319. https://doi.org/10.3390/polym10121319Mancheno M, Astudillo S, Arévalo P, Malo I, Naranjo T, Espinoza J (2016) Aprovechamiento energético de residuos plásticos obteniendo combustibles líquidos, por medio de pirólisis. La Granja 23:1. https://doi.org/10.17163/lgr.n23.2016.06Mumbach GD, de Sousa CR, Machado RAF, Bolzan A (2019) Dissolution of adhesive resins present in plastic waste to recover polyolefin by sink-float separation processes. J Environ Manag 243:453–462. https://doi.org/10.1016/j.jenvman.2019.05.021Pita F, Castilho A (2016) Influence of shape and size of the particles on jigging separation of plastics mixture. Waste Manag 48:89–94. https://doi.org/10.1016/j.wasman.2015.10.034Pita F, Castilho A (2017) Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manag 60:91–99. https://doi.org/10.1016/j.wasman.2016.07.041Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J Environ Monit 12:455–459. https://doi.org/10.1039/B914648BPongstabodee S, Kunachitpimol N, Damronglerd S (2008) Combination of three-stage sink–float method and selective flotation technique for separation of mixed post-consumer plastic waste. Waste Manag 28:475–483. https://doi.org/10.1016/j.wasman.2007.03.005Qu Y h, Li Y p, Zou X t, Xu K w, Xue Y t (2020) Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS) from plastic mixtures. J Mater Cycles Waste Manag 23:96–106. https://doi.org/10.1007/s10163-020-01099-yRahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:46. https://doi.org/10.1038/s41570-017-0046Ruj B, Pandey V, Jash P, Srivastava V (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4. https://doi.org/10.6088/ijaser.04058Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/j.wasman.2014.10.017Sharma HB, Vanapalli KR, Cheela VRS, Ranjan VP, Jaglan AK, Dubey B, Goel S, Bhattacharya J (2020) Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour Conserv Recycl 162:105052. https://doi.org/10.1016/j.resconrec.2020.105052Shen H, Forssberg E, Pugh RJ (2001) Selective flotation separation of plastics by particle control. Resour Conserv Recycl 33:37–50. https://doi.org/10.1016/S0921-3449(01)00056-8Shimoiizaka J, Kounosu A, Hayashi Y, Saito K (1976) A new type sink-float separator for waste plastics. J Min Metall Inst Japan 92:675–679. https://doi.org/10.2473/shigentosozai1953.92.1064_675Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos Part B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252. https://doi.org/10.1016/j.seppur.2006.09.011Tsunekawa M, Naoi B, Ogawa S, Hori K, Hiroyoshi N, Ito M, Hirajima T (2005) Jig separation of plastics from scrapped copy machines. Int J Miner Process 76:67–74. https://doi.org/10.1016/j.minpro.2004.12.001Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater 302:151–157. https://doi.org/10.1016/j.jhazmat.2015.09.062Vazquez YV, Barragán F, Castillo LA, Barbosa SE (2020) Analysis of the relationship between the amount and type of MSW and population socioeconomic level: Bahía Blanca case study, Argentina. Heliyon 6:e04343. https://doi.org/10.1016/j.heliyon.2020.e04343Vitorino de Souza Melaré A, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584. https://doi.org/10.1016/j.wasman.2016.10.045Wang C, Wang H, Fu J, Liu Y (2015) Flotation separation of waste plastics for recycling—A review. Waste Manag 41:28–38. https://doi.org/10.1016/j.wasman.2015.03.027Wang C, Wang H, Gu G, Lin Q, Zhang L, Huang L, Zhao J (2016) Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag 51:13–18. https://doi.org/10.1016/j.wasman.2016.02.037Wang G, Zhao J, Yu K, Mark LH, Wang G, Gong P, Park CB, Zhao G (2017) Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer (Guildf) 119:28–39. https://doi.org/10.1016/j.polymer.2017.05.016Wang L, Wu Y-K, Ai F-F, Fan J, Xia Z-P, Liu Y (2018) Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis. Characterization and Properties Polymers (Basel) 10. https://doi.org/10.3390/polym10121310Wang K, Zhang Y, Zhong Y, Luo M, Du Y, Wang L, Wang H (2020) Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication. Waste Manag 105:309–316. https://doi.org/10.1016/j.wasman.2020.02.021Zhang S, Lin Y, Ye L, Gu Y, Qiu J, Tang T, Li M (2018) Unexpected foaming behavior of heterografted comb-like PS-g-(PS/PE) copolymers with high branching density at semi-solid state under CO2 batching foam. Polymer (Guildf) 146:304–311. https://doi.org/10.1016/j.polymer.2018.05.050Zhang Y, Jiang H, Wang H, Wang C (2020) Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J Hazard Mater 389:121918. https://doi.org/10.1016/j.jhazmat.2019.12191

    Leonardo da Vinci's Contributions from a Design Perspective

    Full text link
    [EN] The figure of Leonardo da Vinci has been extensively studied. In fact, the Leonardiana Library brings together tens of thousands of titles on Leonardo and his work. During the second half of the 20th century, various treaties were published focusing on Leonardo¿s activity as an engineer, and more recently, an increasing number of scientific articles that focus on certain aspects of the prolific work of the genius such as construction, mechanics, strength of materials, etc. have been published. This article analyses the main contributions of the Tuscan genius in the field of design focusing on his processes for generating new solutions, his developments regarding graphic representation techniques, his improvements in plotting and measuring instruments, and how some of his devices were implemented and continue to maintain their usefulness.Cerveró-Meliá, E.; Capuz-Rizo, SF.; Ferrer-Gisbert, P. (2020). Leonardo da Vinci's Contributions from a Design Perspective. Designs. 4(3):1-20. https://doi.org/10.3390/designs4030038S12043Braha, D., & Maimon, O. (1997). The design process: properties, paradigms, and structure. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27(2), 146-166. doi:10.1109/3468.554679Criteria for Accrediting Engineering Programs, 2019–2020 https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#definitionsVeltman, K. H. (2008). Leonardo da Vinci: A Review. Leonardo, 41(4), 381-388. doi:10.1162/leon.2008.41.4.381Innocenzi, P. (2020). Leonardo and the Design of Machines. Advances in Intelligent Systems and Computing, 36-46. doi:10.1007/978-3-030-41018-6_5Oliveira, A. R. E. (2019). The Mechanical Sciences in Leonardo da Vinci’s Work. Advances in Historical Studies, 08(05), 215-238. doi:10.4236/ahs.2019.85016Jaramillo, H. E. (2011). Un Análisis de la Resistencia de Materiales a partir de los Postulados de «Consideraciones y Demostraciones Matemáticas sobre dos Nuevas Ciencias» de Galileo Galilei. Lámpsakos, (5), 53. doi:10.21501/21454086.819Reciprocating machine for weight lifting (Argano), Codex Atlanticus f. 30 v, (1478–1480) https://commons.wikimedia.org/wiki/File:Reproduction_of_page_from_notebook_of_Leonardo_da_Vinci_showing_a_geared_device_assembled_and_disassembled_LCCN2006681098.jpgModel at the Museum of Science and Technology of Milan https://commons.wikimedia.org/wiki/File:Argano_sollevatore_pesi_Leonardo_Museo_scienza_e_tecnologia_Milano.jpgMap of the Val di Chiana, Royal Collection, RLW 12278, (1502–1504) https://commons.wikimedia.org/wiki/File:Val_di_Chiana.jpgReproduction of a compass designed by Leonardo https://commons.wikimedia.org/wiki/File:Compas_Léonard_de_Vinci.JPGProportional or reduction compass. Forster Codex I f. 45 (1485) https://commons.wikimedia.org/wiki/File:Reduction_Compass_Leonardo.jpgParabolic Compass. Codex Atlanticus f. 1093 r https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20171027130237%21Leonardo_parabolic_compass.JPG.Detail of the Codex Atlanticus f. 5 r. Enlarged detail of the prospectograph being used by Leonardo https://commons.wikimedia.org/wiki/File:Codice_Atlantico_-_Perspectograph.jpgStudy ot two odometers. Codex Atlanticus, f. 1b r https://commons.wikimedia.org/wiki/File:Odomètre-Léonard.jpgOdometer model. Museo Nazionale della Scienza e della Tecnologia Leonardo da Vinci. (National Museum of Science and Technology of Milan) https://commons.wikimedia.org/wiki/File:Odometro_a_carriola_-_Museo_scienza_tecnologia_Milano_09908_01.jpgPugno, N. M. (2019). The commemoration of Leonardo da Vinci. Meccanica, 54(15), 2317-2324. doi:10.1007/s11012-019-01099-9Study for the mechanism of a manual lift (1495–1497), Madrid Codex I, f. 9 r https://commons.wikimedia.org/wiki/File:Ascenceur_à_manivelle-Léonard.jpgStudy of a piling machine. Codex Atlanticus, f 785, Ambrosian Library of Milan https://commons.wikimedia.org/wiki/File:Sonnette-Léonard.jpgModel of Leonardo’s pile machine, at the National Museum of Science and Technology of Milan https://commons.wikimedia.org/wiki/File:Battipalo_-_Museo_scienza_tecnologia_Milano_00040_01.jpgDetail of a mechanical jack, Codex Atlanticus, f. 0998 r, Ambrosian Library of Milan https://commons.wikimedia.org/wiki/File:Cric-Léonard.jpgManuscript of the self-propelled vehicle, Codex Atlanticus, f. 812 r (1478-1480), Ambrosiana Library of Milan https://commons.wikimedia.org/wiki/File:Leonardo_da_vinci,_Automobile.jpgModel of the self-propelled vehicle, at the National Museum of Science and Technology of Milan https://commons.wikimedia.org/wiki/File:Carro_semovente_-_Museo_scienza_tecnologia_Milano_09082_02.jp

    Real-time assessment of flash flood impacts at pan-European scale: the ReAFFINE method

    Get PDF
    The development of early warning systems (EWSs) is a key element for the effective mitigation of flash flood impacts. Emergency managers and other end-users increasingly recognise the benefit of tools that automatically translate the forecasted flash flood hazard (e.g. expressed in terms of peak discharge or return period) into the expected socio-economic impacts (e.g. the affected population). While previous studies aimed at forecasting flash flood impacts at local or regional scales, this paper presents a simple approach for estimating in real time the flash flood impacts at pan-European scale. The proposed method – named ReAFFINE – is designed to be integrated into an EWS for end-users operating over large spatial domains (e.g. across regions or countries). ReAFFINE uses the pan-European flash flood hazard estimates from the ERICHA system to retrieve the potentially flooded areas from the national flood maps (generated in the framework of the EU Floods Directive). By combining the potentially flooded areas with socio-economic exposure information, ReAFFINE estimates in real time the exposed population and critical infrastructures. For two catastrophic flash flood events affecting Europe in recent years, ReAFFINE has demonstrated the capability to identify impacts over large spatial scales. Also at sub-regional level, the method has mostly been able to locate the areas and municipalities where the most important impacts occurred. The results also show that the performance is sensitive to the quality of the rainfall estimates that drive the hazard estimation, and to the comprehensiveness of the employed flood maps.The EU Horizon 2020 project ANYWHERE (H2020-DRS-1-2015-700099) financed the initial period of this work. The study was finalised in the framework of the TAMIR project (UCPM-874435-TAMIR). We would like to express our gratitude to OPERA, WMO and the Spanish State Meteorological Agency (AEMET) for the provision of meteorological data, and the Spanish National Geographic Institute (IGN) and the German Federal Institute of Hydrology (BfG) for access to the national flood maps. Furthermore, we would like to thank OpenStreetMaps, Milan Kalas, and the Joint Research Centre for providing the pan-European exposure datasets, and the European Severe Weather Database (ESWD), the Bavarian Environment Agency (LfU), the Spanish Insurance Compensation Consortium (CCS), the Spanish Directorate-General for Civil Protection and Emergencies (DGPCE), and Jens de Bruijn (Vrije Universiteit Amsterdam) from the Global Flood Monitor for meticulously reporting the impacts of the analysed flood events.Peer ReviewedPostprint (published version

    Tipificación de «Arnica montana» L. (Asteraceae)

    Get PDF
    A lectotype for Arnica montana L. (Asteraceae) is designated from Linnaeus’ original material preserved in the UPS-BURSER herbarium.Se designa un lectótipo para Arnica montana L. (Asteraceae) a partir del material original de Linneo conservado en el herbario UPS-BURSER

    Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings

    Full text link
    [EN] The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.Fuentes Bargues, JL.; Vivancos, J.; Ferrer-Gisbert, P.; Gimeno-Guillem, MÁ. (2020). Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings. Sustainability. 12(13):1-23. https://doi.org/10.3390/su12135347S1231213Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiD95W5-qrqAhVP62EKHaYLCFAQFjADegQIARAB&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fsites%2Fener%2Ffiles%2Fdocuments%2F2012_energy_roadmap_2050_en_0.pdf&usg=AOvVaw3tfjm-IvZt9fXrnZuvpohwEuropean Comission Climate Strategies & Targets https://ec.europa.eu/clima/policies/strategies/2030_enEuropean Comission Climate Negotations https://ec.europa.eu/clima/policies/international/negotiations/paris_en2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=ENKurnitski, J., Saari, A., Kalamees, T., Vuolle, M., Niemelä, J., & Tark, T. (2011). Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy and Buildings, 43(11), 3279-3288. doi:10.1016/j.enbuild.2011.08.033Aparicio Ruiz, P., Guadix Martín, J., Salmerón Lissén, J. M., & Sánchez de la Flor, F. J. (2014). An integrated optimisation method for residential building design: A case study in Spain. Energy and Buildings, 80, 158-168. doi:10.1016/j.enbuild.2014.05.020Tourism and Digital Agenda Plan Nacional de Acción de Eficiencia Energética 2017–2020 https://ec.europa.eu/energy/sites/ener/files/documents/es_neeap_2017_es.pdfGuía de Ahorro y Eficiencia Energética en Oficinas http://www.officinaseficientes.es/docs/guia_OFF.pdfCrawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661-673. doi:10.1016/j.buildenv.2006.10.027Pérez-Andreu, V., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J.-L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165, 63-74. doi:10.1016/j.energy.2018.09.015Herrando, M., Cambra, D., Navarro, M., de la Cruz, L., Millán, G., & Zabalza, I. (2016). Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption. Energy Conversion and Management, 125, 141-153. doi:10.1016/j.enconman.2016.04.037Sinacka, J., & Ratajczak, K. (2018). Analysis of selected input data impact on energy demand in office building - case study. MATEC Web of Conferences, 222, 01015. doi:10.1051/matecconf/201822201015Mikulik, J. (2018). Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland). Sustainability, 10(8), 2901. doi:10.3390/su10082901Aparicio Ruiz, P., Sánchez de la Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74-84. doi:10.1016/j.enbuild.2016.03.023Royal Decree 235/2013, of 5th April, Agreeing to the Procedure Basic for the Certification of the Energy Efficiency of Buildings https://www.boe.es/buscar/pdf/2013/BOE-A-2013-3904-consolidado.pdfUnified Tool LIDER-CALENER (HULC-Tool) https://veredes.es/blog/en/herramienta-unificada-lider-calener-hulc/Rosselló-Batle, B., Ribas, C., Moià-Pol, A., & Martínez-Moll, V. (2015). An assessment of the relationship between embodied and thermal energy demands in dwellings in a Mediterranean climate. Energy and Buildings, 109, 230-244. doi:10.1016/j.enbuild.2015.10.007Sánchez Ramos, J., Guerrero Delgado, Mc., Álvarez Domínguez, S., Molina Félix, J. L., Sánchez de la Flor, F. J., & Tenorio Ríos, J. A. (2019). Systematic Simplified Simulation Methodology for Deep Energy Retrofitting Towards Nze Targets Using Life Cycle Energy Assessment. Energies, 12(16), 3038. doi:10.3390/en12163038Catalogue of Constructive Elements of the TBC 2011 https://itec.cat/cec/Construction Technology of Catalonia (Instituto de Tecnología de la Construcción: ITec) https://en.itec.cat/Ministry of Development Support Document of the DB HE1 for the calculation of Characteristic Parameters of the Building Envelope (DA DB-HE/1) 2015 https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DA_DB-HE-1_Calculo_de_parametros_caracteristicos_de_la_envolvente.pdfCondiciones de Aceptación de Procedimientos Alternativos a LIDER y CALENER https://www.idae.es/publicaciones/condiciones-de-aceptacion-de-procedimientos-alternativos-lider-y-calenerDesign Builder Software, ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests 2006 http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdfDatabase 2019 https://www.five.es/productos/herramientas-on-line/visualizador-2019/Haase, M., Marques da Silva, F., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings, 41(4), 361-373. doi:10.1016/j.enbuild.2008.11.008Lau, A. K. K., Salleh, E., Lim, C. H., & Sulaiman, M. Y. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia. International Journal of Sustainable Built Environment, 5(2), 387-399. doi:10.1016/j.ijsbe.2016.04.004Al-ajmi Farraj F., & Hanby, V. I. (2008). Simulation of energy consumption for Kuwaiti domestic buildings. Energy and Buildings, 40(6), 1101-1109. doi:10.1016/j.enbuild.2007.10.010Raheem, A. A., Issa, R. R., & Olbina, S. (2013). Solar transmittance analysis of different types of sunshades in the Florida climate. Building Simulation, 7(1), 3-11. doi:10.1007/s12273-013-0137-4Valladares-Rendón, L. G., & Lo, S.-L. (2014). Passive shading strategies to reduce outdoor insolation and indoor cooling loads by using overhang devices on a building. Building Simulation, 7(6), 671-681. doi:10.1007/s12273-014-0182-7Huang, Y., Niu, J., & Chung, T. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Applied Energy, 134, 215-228. doi:10.1016/j.apenergy.2014.07.100Ng, P. K., Mithraratne, N., & Kua, H. W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings, 66, 274-281. doi:10.1016/j.enbuild.2013.07.029Ihara, T., Gao, T., Grynning, S., Jelle, B. P., & Gustavsen, A. (2015). Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 142, 179-191. doi:10.1016/j.apenergy.2014.12.05

    Study of Major-Accident Risk Assessment Techniques in the Environmental Impact Assessment Process

    Full text link
    [EN] Design, implementation, and operation of any project are affected by the environment where it is developed; at the same time, the project will influence the environment, since during its life cycle it can cause an impact on it. This impact can lead to social, economic, and environmental results. Directive 2014/52/EU, on the assessment of the effects of certain public and private projects on the environment, reflects the obligation for the project promoter to consider, in the Environmental Impact Study (EIS) of the project, their vulnerability (exposure and resilience) to major accidents and/or disasters, evaluating both the risk and their effects on the environment, in case these major accidents and/or disasters appear. The IEC 31.010:2019 Risk management-Risk assessment techniques standard defines 45 risk appreciation techniques that are useful when analysing the risks, in general. The objective of this paper is to review these 45 techniques, and establish which ones can be used for the assessment of accidents or disasters required in the specific environmental impact assessment process to accomplish with the regulation. After the revision, the authors propose five risks appreciation techniques that could be used for the assessment of major accidents and or disasters in projects for which EIA has to be carried out.The APC was funded by Universitat Politecnica de Valencia, Spain.Fuentes Bargues, JL.; Bastante Ceca, MJ.; Ferrer-Gisbert, P.; González-Cruz, M. (2020). Study of Major-Accident Risk Assessment Techniques in the Environmental Impact Assessment Process. Sustainability. 12(14):1-16. https://doi.org/10.3390/su12145770S1161214Gimenez, C., Sierra, V., & Rodon, J. (2012). Sustainable operations: Their impact on the triple bottom line. International Journal of Production Economics, 140(1), 149-159. doi:10.1016/j.ijpe.2012.01.035Kleindorfer, P. R., Singhal, K., & Wassenhove, L. N. (2009). Sustainable Operations Management. Production and Operations Management, 14(4), 482-492. doi:10.1111/j.1937-5956.2005.tb00235.xZhang, X., Wu, Y., & Shen, L. (2015). Embedding «green» in project-based organizations: the way ahead in the construction industry? Journal of Cleaner Production, 107, 420-427. doi:10.1016/j.jclepro.2014.10.024Chofreh, A. G., Goni, F. A., Malik, M. N., Khan, H. H., & Klemeš, J. J. (2019). The imperative and research directions of sustainable project management. Journal of Cleaner Production, 238, 117810. doi:10.1016/j.jclepro.2019.117810Armenia, S., Dangelico, R. M., Nonino, F., & Pompei, A. (2019). Sustainable Project Management: A Conceptualization-Oriented Review and a Framework Proposal for Future Studies. Sustainability, 11(9), 2664. doi:10.3390/su11092664Silvius, A. J. G., & Schipper, R. P. J. (2014). Sustainability in project management: A literature review and impact analysis. Social Business, 4(1), 63-96. doi:10.1362/204440814x13948909253866Dong, N., Fu, Y., Xiong, F., Li, L., Ao, Y., & Martek, I. (2019). Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China. Sustainability, 11(20), 5731. doi:10.3390/su11205731Gilbert Silvius, A. J., Kampinga, M., Paniagua, S., & Mooi, H. (2017). Considering sustainability in project management decision making; An investigation using Q-methodology. International Journal of Project Management, 35(6), 1133-1150. doi:10.1016/j.ijproman.2017.01.011Demidova, O., & Cherp, A. (2005). Risk assessment for improved treatment of health considerations in EIA. Environmental Impact Assessment Review, 25(4), 411-429. doi:10.1016/j.eiar.2004.09.008Zeleňáková, M., & Zvijáková, L. (2017). Risk analysis within environmental impact assessment of proposed construction activity. Environmental Impact Assessment Review, 62, 76-89. doi:10.1016/j.eiar.2016.10.003Marconi, M., Marilungo, E., Papetti, A., & Germani, M. (2017). Traceability as a means to investigate supply chain sustainability: the real case of a leather shoe supply chain. International Journal of Production Research, 55(22), 6638-6652. doi:10.1080/00207543.2017.1332437Torres-Ruiz, A., & Ravindran, A. R. (2018). Multiple criteria framework for the sustainability risk assessment of a supplier portfolio. Journal of Cleaner Production, 172, 4478-4493. doi:10.1016/j.jclepro.2017.10.304Oliveira, F. N. de, Leiras, A., & Ceryno, P. (2019). Environmental risk management in supply chains: A taxonomy, a framework and future research avenues. Journal of Cleaner Production, 232, 1257-1271. doi:10.1016/j.jclepro.2019.06.032Chen, Z., Li, H., Ren, H., Xu, Q., & Hong, J. (2011). A total environmental risk assessment model for international hub airports. International Journal of Project Management, 29(7), 856-866. doi:10.1016/j.ijproman.2011.03.004Zeleňáková, M., Labant, S., Zvijáková, L., Weiss, E., Čepelová, H., Weiss, R., … Minďaš, J. (2020). Methodology for environmental assessment of proposed activity using risk analysis. Environmental Impact Assessment Review, 80, 106333. doi:10.1016/j.eiar.2019.106333Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the Process Industries, 15(4), 291-303. doi:10.1016/s0950-4230(02)00008-6Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523. doi:10.1016/j.jlp.2011.03.004Zheng, X., & Liu, M. (2009). An overview of accident forecasting methodologies. Journal of Loss Prevention in the Process Industries, 22(4), 484-491. doi:10.1016/j.jlp.2009.03.005Price, C. J., & Taylor, N. S. (2002). Automated multiple failure FMEA. Reliability Engineering & System Safety, 76(1), 1-10. doi:10.1016/s0951-8320(01)00136-
    corecore