2,053 research outputs found
J/psi suppression at SPS and RHIC in the comovers approach
The NA50 collaboration data on the suppression are compared with the
results obtained in a comovers approach based on the Dual Parton Model (DPM).
Predictions for the suppression versus the charged multiplicity -
measured in the rapidity region of the dimuon trigger - are given for SPS and
RHIC energies.Comment: 4 pages, contribution to QM200
Report
Information about the position of sensory objects and identifying their concurrent behavioral relevance is vital to navigate the environment. In the auditory system, spatial information is computed in the brain based on the position of the sound source relative to the observer and thus assumed to be egocentric throughout the auditory pathway. This assumption is largely based on studies conducted in either anesthetized or head-fixed and passively listening animals, thus lacking self-motion and selective listening. Yet these factors are fundamental components of natural sensing' that may crucially impact the nature of spatial coding and sensory object representation.(2) How individual objects are neuronally represented during unrestricted self-motion and active sensing remains mostly unexplored. Here, we trained gerbils on a behavioral foraging paradigm that required localization and identification of sound sources during free navigation. Chronic tetrode recordings in primary auditory cortex during task performance revealed previously unreported sensory object representations. Strikingly, the egocentric angle preference of the majority of spatially sensitive neurons changed significantly depending on the task-specific identity (outcome association) of the sound source. Spatial tuning also exhibited large temporal complexity. Moreover, we encountered egocentrically untuned neurons whose response magnitude differed between source identities. Using a neural network decoder, we show that, together, these neuronal response ensembles provide spatiotemporally co-existent information about both the egocentric location and the identity of individual sensory objects during self-motion, revealing a novel cortical computation principle for naturalistic sensing
Computational study of uniaxial deformations in silica aerogel using a coarse-grained model
Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing
Elliptic Flow and Fixed p_T Suppression in a Final State Interaction Model
It has been shown that a final state interaction model, used to describe
J/psi suppression, can also describe the fixed p_T suppression of the pi^0 (and
charged pions) yield at all values of p_T, with a final state interaction
cross-section sigma close to one milibarn. We propose an extension of the model
to the pion motion in the transverse plane - which introduces a dependence of
the suppression on the azimuthal angle theta_R. Using the same value of sigma,
we obtain values of the elliptic flow v_2 close to the experimental ones, for
all values of p_T, including the soft p_T region.Comment: 21 pages, 6 figure
UN open gis capacity building
The UN Open GIS Initiative is to identify and develop, under UN guidance, an Open Source GIS bundle that meets the requirements of UN operations, taking full advantage of the expertise of mission partners (partner nations, technology contributing countries, international organizations, academia, NGO's, private sector). The project, started in 2016, is composed by 4 working groups. One of the working group is specifically related to Capacity Building, given its importance for the success of the project. UN Open GIS will be based on some existing open source geospatial software (packages and libraries) with many extensions specifically developed. The users of the platform will be the UN staff supporting with mapping and GIS the peacekeeping missions. Therefore, they are generally expert of this specific domain, even if they are currently using proprietary software. UN Open GIS Capacity Building is specifically thought for covering this gap, providing them the suitable background about open source geospatial software in general and the education tailored to the solution that has been being developed within the project itself
Helping the waiter to hold his tray: Rigid haptic linkage promotes inter-personal motor coordination
When a glass is lifted from a tray, there is a challenge for the waiter. He must quickly compensate for the reduction in the weight of the tray to keep it balanced. This compensation is easily achieved if the waiter lifts the glass himself. Because he has, himself, initiated the action, he can predict the timing and the magnitude of the perturbation of the tray and respond (via the holding hand) accordingly. In this study, we examined coordination when either one or two people hold the tray while either one of them or a third person removes the glass. Our results show that there is exquisite coordination between the two people holding the tray. We suggest that this coordination depends upon the haptic link provided by the rigid platform that both people are holding. We conclude that the guest at a reception should not lift his drink from the waiter’s tray until they have the waiter’s attention but, if too thirsty to wait, should lend a hand holding the tray
- …